Moored observations of turbulent mixing events in deep Lake Garda, Italy

Submitted: 15 August 2020
Accepted: 26 October 2020
Published: 3 November 2020
Abstract Views: 2700
PDF: 750
HTML: 12
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Deep water circulation and mixing processes are responsible for the transport of matter, nutrients and pollutants in deep lakes. Nevertheless, detailed continuous observations are rarely available. To overcome some of these deficiencies and with the aim of improving our understanding of deep mixing processes, a dedicated yearlong mooring comprising 100 high-resolution temperature sensors and a single current meter were located in the deeper half of the 344 m deepest point of the subalpine Lake Garda, Italy. The observations show peaks and calms of turbulent exchange, besides ubiquitous internal wave activity. In late winter, northerly winds activate episodic deep convective overturning, the dense water being subsequently advected along the lake-floor. Besides deep convection, such winds also set-up seiches and inertial waves that are associated with about 100 times larger turbulence dissipation rates than that by semidiurnal internal wave breaking observed in summer. In the lower 60 m above the lake-floor, however, the average turbulence dissipation rate is approximately constant in value year-around, being about 10 times larger than open-ocean values, except during deep convection episodes.



PlumX Metrics


Download data is not yet available.


Amadori M, Piccolroaz S, Giovannini L, Zardi D, Toffolon M, 2018. Wind variability and Earth’s rotation as drivers of transport in a deep, elongated subalpine lake: the case of Lake Garda. J. Limnol. 77:1814. DOI:
Ambrosetti W, Barbanti L, 1999. Deep water warming in lakes: an indicator of climatic change. J. Limnol. 58:1. DOI:
Antenucci J, Imberger J, 2003. The Seasonal Evolution of Wind/Internal Wave Resonance in Lake Kineret. Limnol. Oceanogr. 48:2055-2061. DOI:
Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Gerald Jäger C, Striebel M, 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150:643-654. DOI:
Boegman L, Imberger J, Ivey GN, Antenucci JP, 2003. High-frequency internal waves in large stratified lakes. Limnol. Oceanogr. 46:895-919. DOI:
Boehrer B, Fukuyama R, Chikita K, 2008. Stratification of very deep, thermally stratified lakes. Geophys. Res. Lett. 35:L16405. DOI:
Chalamalla VK, Sarkar S, 2015. Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr. 45:1969-1983. DOI:
Copetti D, Guyennon N, Buzzi F, 2020. Generation and dispersion of chemical and biological gradients in a large-deep multi-basin lake (Lake Como, north Italy): The joint effect of external drivers and internal wave motions. Sci. Tot. Env. 749:141587. DOI:
Dauxois T, Didier A, Falcon E, 2004. Observations of near-critical reflection of internal waves in a stably stratified fluid. Phys. Fluids 16:1936-1941. DOI:
Dillon TM, 1982. Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87:9601-9613. DOI:
Dokulil MT, 2014. Impact of climate warming on European inland waters. Inland Wat. 4:27-40. DOI:
Ekman VW, 1905. On the influence of the Earth’s rotation on ocean-currents. Ark Math Astron Fys 2:1-52.
Eriksen CC, 1982. Observations of internal wave reflection off sloping bottoms. J. Geophys. Res. 87:525-538. DOI:
Farmer DM, 1978. Observations of long nonlinear internal waves in a lake. J. Phys. Oceanogr. 8:63-73. DOI:<0063:OOLNIW>2.0.CO;2
Fer I, Lemmin U, Thorpe SA, 2002. Winter cascading of cold water in Lake Geneva. J. Geophys. Res. 107:C6. DOI:
Galbraith PS, Kelley DE, 1996. Identifying overturns in CTD profiles. J. Atmos. Ocean. Tech. 13:688-702. DOI:<0688:IOICP>2.0.CO;2
Garanaik A, Venayagamoorthy SK, 2019. On the inference of the state of turbulence and mixing efficiency in stably stratified flows. J. Fluid Mech. 867:323-333. DOI:
Garrett CJR, Munk WH, 1972. Space-time scales of internal waves. Geophys. Fluid Dyn. 3:225-264. DOI:
Gill AE, 1982. Atmosphere-ocean dynamics. Academic Press: 682 pp.
Giovannini L, Laiti L, Zardi D, de Franceschi M, 2015. Climatological characteristics of the Ora del Garda wind in the Alps. Int. J. Clim. 35:4103-4115. DOI:
Gloor M, Wüest A, Münnich M, 1994. Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiol. 284:59-68. DOI:
Goudsmit G-H, Peeters F, Gloor M, Wüest A, 1997. Boundary versus internal diapycnal mixing in stratified natural waters. J. Geophys. Res. 102:27903-27914. DOI:
Goudsmit G‐H, Burchard H, Peeters F, Wüest A, 2002. Application of k‐ϵ turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res. 107:3230. DOI:
Gregg MC, 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94:9686-9698. DOI:
Gregg MC, D’Asaro EA, Riley JJ, Kunze E, 2018. Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10:443-473. DOI:
Guyennon N, Valerio G, Salerno F, Pilotti M, Tartari G, Copetti D, 2014. Internal wave weather heterogeneity in a deep multi-basin subalpine lake resulting from wavelet transform and numerical analysis. Adv. Water Res. 71:149-161. DOI:
Imboden DM, Wüest A, 1995. Mixing mechanisms in lakes, p. 83-138. In: A. Lerman, D.M. Imboden and J.R. Gat (eds.), Physics and chemistry of lakes. Cham, Springer. DOI:
IOC, SCOR, IAPSO, 2010. The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO.
LeBlond PH, Mysak LA, 1978. Waves in the ocean. Elsevier: 602 pp.
Lemmin U, Mortimer CH, Bäuerle E, 2005. Internal seiche dynamics in Lake Geneva. Limnol. Oceanogr. 50:207-216. DOI:
Leoni B, Garibaldi L, Gulati R, 2014. How does interannual trophic variability caused by vertical water mixing affect reproduction and population density of the Daphnia longispina group in Lake Iseo, a deep stratified lake in Italy. Inland Wat. 4:193-203. DOI:
Li S, Li H, 2006. Parallel AMR code for compressible MHD and HD equations. T-7, MS B284, Theoretical division, Los Alamos National Laboratory. Available from:
Lorke A, Peeters F, Bäuerle E, 2006. High-frequency internal waves in the littoral zone of a large lake. Limnol. Oceanogr. 51: 1935-1939. DOI:
Lorke A, 2007. Boundary mixing in the thermocline of a large lake. J. Geophys. Res. 112:C09019. doi:10.1029/2006JC004008 DOI:
Lorrai C, Umlauf L, Becherer JK, Lorke A, Wüest A, 2011. Boundary mixing in lakes: 2. Combined effects of shear-and convectively induced turbulence on basin-scale mixing. J. Geophys. Res. 116:C10018. DOI:
Mater BD, Venayagamoorthy SK, St. Laurent L, Moum JN, 2015. Biases in Thorpe scale estimation of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr. 45:2497-2521. DOI:
Matsumoto Y, Hoshino M, 2004. Onset of turbulence by a Kelvin-Helmholtz vortex. Geophys. Res. Lett. 31:L02807. DOI:
Oakey NS, 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr. 12:256-271. DOI:<0256:DOTROD>2.0.CO;2
Osborn TR, 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10:83-89. DOI:<0083:EOTLRO>2.0.CO;2
Perroud M, Goyette S, Martynov A, Beniston M, Anneville O, 2009. Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models. Limnol. Oceanogr. 54:1574-594. DOI:
Phillips OM, 1971. On spectra measured in an undulating layered medium. J. Phys. Oceanogr. 1:1-6. DOI:<0001:OSMIAU>2.0.CO;2
Piccolroaz S, Amadori M, Toffolon M, Dijkstra HA, 2019. Importance of planetary rotation for ventilation processes in deep elongated lakes: Evidence from Lake Garda (Italy). Sci. Rep. 9:8290. DOI:
Polzin K L, Toole JM, Ledwell JR, Schmitt RW, 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93-96. DOI:
Portwood GD, de Bruyn Kops SM, Caulfield CP, 2019. Asymptotic dynamics of high dynamic range stratified turbulence. Phys. Rev. Lett. 122:194504. DOI:
Preusse M, 2012. Properties of internal solitary waves in deep temperate lakes. Ph.D. Thesis University of Konstanz. DOI:
Ravens TM, Kocsis O, Wüest A, Granin N, 2000. Small-scale turbulence and vertical mixing in Lake Baikal. Limnol. Oceanogr. 45:159-173. DOI:
Salmaso N, Decet F, 1998. Interactions of physical, chemical and biological processes affecting the seasonality of mineral composition and nutrient cycling in the water column of a deep subalpine lake (Lake Garda, Northern Italy). Arch. Hydrobiol. 142:385-414. DOI:
Salmaso N, Morabito G, Mosello R, Garibaldi L, Simona M, Buzzi F, Ruggiu D, 2003. A synoptic study of phytoplankton in the deep lakes south of the Alps (lakes Garda, Iseo, Como, Lugano, and Maggiore). J. Limnol. 62:207. DOI:
Salmaso N, 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnol. Oceanogr. 50:553-565. DOI:
Sarkar S, Scotti A, 2017. From topographic internal gravity waves to turbulence. Ann. Rev. Fluid Mech. 49:195-220. DOI:
Swann GEA, Panizzo VN, Piccolroaz S, Pashley V, Horstwood MSA, Roberts S, Vologina E, Piotrowska N, Sturm M, Zhdanov A, Granin N, Norman V, McGowan S, Mackay AS, 2020. Changing nutrient cycling in Lake Baikal, the world’s oldest lake. Proc. Natl. Acad. Sci. USA 117:27211-27217. DOI:
Tennekes H, Lumley JL, 1972. A first in turbulence. MIT Press: 300 pp. DOI:
Thorpe SA, 1977. Turbulence and mixing in a Scottish loch. Phil. Trans. Roy. Soc. Lond. A 286: 25-181. DOI:
Thorpe SA, Keen JM, Jiang R, Lemmin U, 1996. High frequencu internal waves in Lake Geneva. Phil. Trans. R. Soc. Lond. A 354 237-257. DOI:
Toffolon M, Piccolroaz S, Dijkstra HA, 2017. A plunge into the depths of Italy’s Lake Garda. Eos 98. Available from: DOI:
Valerio G, Pilotti M, Clelia M, Imberger J, 2012. The structure of basin scale internal waves in a stratified lake in response to lake bathymetry and wind spatial and temporal distribution: Lake Iseo, Italy. Limnol. Oceanogr. 57:772-786. DOI:
Valerio G, Pilotti M, Lau M, Hupfer M, 2019. Oxycline oscillations induced by internal waves in deep Lake Iseo. Hydrol. Earth Syst. Sci. 23:1763-1777. DOI:
van Haren H, 2017. Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dyn. Atmos. Oc. 77:89-99. DOI:
van Haren H, 2018. Philosophy and application of high-resolution temperature sensors for stratified waters. Sensors 18:3184. DOI:
van Haren H, 2019. Open-ocean interior moored sensor turbulence estimates, below a Meddy. Deep-Sea Res. I 144:75-84. DOI:
van Haren H, Gostiaux L, 2012. Detailed internal wave mixing above a deep-ocean slope. J. Mar. Res. 70:173-197. DOI:
van Haren H, Maas L, Zimmerman JTF, Ridderinkhof H, Malschaert H, 1999. Strong inertial currents and marginal internal wave stability in the central North Sea. Geophys. Res. Lett. 26:2993-2996. DOI:
van Haren H, Cimatoribus AA, Gostiaux L, 2015. Where large deep-ocean waves break. Geophys. Res. Lett. 42:2351-2357. DOI:
Wang Y, Hutter C, Bäuerle E, 2000. Wind-induced baroclinic response of Lake Constance. Ann. Geophys. 18:1488-1501. DOI:
Warhaft Z, 2000. Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32:203-240. DOI:
Wetzel RG, 2001. Limnology: Lake and river ecosystems. Academic Press, San Diego: 1006 pp.
Winters KB, 2015. Tidally driven mixing and dissipation in the boundary layer above steep submarine topography. Geophys. Res. Lett. 42:7123-7130. DOI:
Wüest A, Lorke A, 2003. Small-scale hydrodynamics in lakes. Ann. Rev. Fluid Mech. 35:373-412. DOI:

Edited by

Aldo Marchetto, CNR-IRSA Verbania, Italy
Sebastiano Piccolroaz, Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht

Present address: École Polytechnique Fédérale de Lausanne, Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, APHYS GR A2 412, 1015 Lausanne, Switzerland

Marina Amadori, Department of Civil, Environmental, and Mechanical Engineering, University of Trento

Present address: Institute for electromagnetic sensing of the environment (IREA), National Research Council, Milan, Italy

How to Cite

van Haren, Hans, Sebastiano Piccolroaz, Marina Amadori, Marco Toffolon, and Henk A. Dijkstra. 2020. “Moored Observations of Turbulent Mixing Events in Deep Lake Garda, Italy”. Journal of Limnology 80 (1).

List of Cited By :

Crossref logo