Simulating thermal dynamics of the largest lake in the Caucasus region: The mountain Lake Sevan

Submitted: 18 April 2021
Accepted: 29 September 2021
Published: 18 October 2021
Abstract Views: 2995
PDF: 416
HTML: 23
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lake Sevan is the largest freshwater body in the Caucasus region, situated at an altitude of 1,900 m asl. While it is a major water resource in the whole region, Lake Sevan has received little attention in international limnological literature. Although recent studies pointed to algal blooms and negative impacts of climate change and eutrophication, the physical controls on thermal dynamics have not been characterized and model-based assessments of climate change impacts are lacking. We compiled a decade of historical data for meteorological conditions and temperature dynamics in Lake Sevan and used a one-dimensional hydrodynamic model (GLM 3.1) in order to study thermal structure, the stratification phenology and their meteorological drivers in this large mountain lake. We then evaluated the representativeness of meteorological data products covering almost 4 decades (EWEMBI-dataset: 1979-2016) for driving the model and found that these data are well suited to restore long term thermal dynamics in Lake Sevan. This established model setting allowed us to identify major changes in Lake Sevan’s stratification in response to changing meteorological conditions as expected from ongoing climate change. Our results point to a changing mixing type from dimictic to monomictic as Lake Sevan will experience prolonged summer stratification periods and more stable stratification. These projected changes in stratification must be included in long-term management perspectives as they will intensify water quality deteriorations like surface algal blooms or deep water anoxia.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Andréassian V, Gevorgyan A, Azizyan L, Misakyan A, Khalatyan Y, Melkonyan H, Misakyan E, Piliposyan N, Azizyan H (2021). Climate elasticity of Lake Sevan inflow. J. Limnol. (in press).
Baracchini T, Wüest A, Bouffard D, 2020. Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics. Water Res. 172:115529. DOI: https://doi.org/10.1016/j.watres.2020.115529
Berger SA, Diehl S, Stibor H, Sebastian P, Scherz A, 2014. Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: no sign of trophic mismatch. Freshwater Biol. 59:2204–2220. DOI: https://doi.org/10.1111/fwb.12424
Bocaniov SA, Lamb KG, Liu W, Rao YR, Smith REH, 2020. High Sensitivity of lake hypoxia to air temperatures, winds, and nutrient loading: Insights from a 3-D lake model. Water Resour. Res. 56:e2019WR027040. DOI: https://doi.org/10.1029/2019WR027040
Bocaniov SA, Ullmann C, Rinke K, Lamb KG, Boehrer B, 2014. Internal waves and mixing in a stratified reservoir: Insights from three-dimensional modeling. Limnologica 49:52-67. DOI: https://doi.org/10.1016/j.limno.2014.08.004
Boehrer B, Schultze M, 2008. Stratification of lakes. Rev. Geophys. 46:RG2005. DOI: https://doi.org/10.1029/2006RG000210
Bruce LC, Frassl MA, Arhonditsis GB, Gal G, Hamilton DP, Hanson PC, Hetherington AL, Melack JM, Read JS, Rinke K, Rigosi A, Trolle D, Winslow L, Adrian R, Ayala AI, Bocaniov SA, Boehrer B, Boon C, Brookes JD, Bueche T, Busch BD, Copetti D, Cortés A, de Eyto E, Elliott JA, Gallina N, Gilboa Y, Guyennon N, Huang L, Kerimoglu O, Lenters JD, MacIntyre S, Makler-Pick V, McBride CG, Moreira S, Özkundakci D, Pilotti M, Rueda FJ, Rusak JA, Samal NR, Schmid M, Shatwell T, Snorthheim C, Soulignac F, Valerio G, van der Linden L, Vetter M, Vinçon-Leit, B, Wang J, Weber M, Wickramaratne C, Woolway RI, Yao H, Hipsey MR, 2018. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ. Model. Softw. 102:274–291. DOI: https://doi.org/10.1016/j.envsoft.2017.11.016
Bueche T, Hamilton DP, Vetter M, 2017. Using the General Lake Model (GLM) to simulate water temperatures and ice cover of a medium-sized lake: a case study of Lake Ammersee, Germany. Environ. Earth Sci. 76:461. DOI: https://doi.org/10.1007/s12665-017-6790-7
Dong F, Mi C, Hupfer M, Lindenschmidt K-E, Peng W, Liu X, Rinke K, 2020. Assessing vertical diffusion in a stratified lake using a three-dimensional hydrodynamic model. Hydrol. Process. 34:1131–1143. DOI: https://doi.org/10.1002/hyp.13653
Fang X, Stefan HG, 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. Limnol. Oceanogr. 54:2359–2370. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2359
Farrell KJ, Ward NK, Krinos AI, Hanson PC, Daneshmand V, Figueiredo RJ, Carey CC, 2020. Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state. Ecol. Model. 430:109134. DOI: https://doi.org/10.1016/j.ecolmodel.2020.109134
Fenocchi A, Rogora M, Sibilla S, Ciampittiello M, Dresti C, 2018. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim. Dyn. 51:3521–3536. DOI: https://doi.org/10.1007/s00382-018-4094-6
Gabrielyan B, Khosrovyan A, Schultze M, (2021). A review of anthropogenic stressors on Lake Sevan. J. Limnol. (in press). DOI: https://doi.org/10.4081/jlimnol.2022.2061
Gevorgyan A, 2014. Surface and tropospheric temperature trends in Armenia. Int. J. Climatol. 34:3559–3573. DOI: https://doi.org/10.1002/joc.3928
Gevorgyan A, 2018. Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J. Geophys. Res. Atmospheres 123:11008-11029. DOI: https://doi.org/10.1029/2017JD028247
Gevorgyan A, Melkonyan H, 2015. Regional impact of the Armenian highland as an elevated heat source: ERA-Interim reanalysis and observations. Clim. Dyn. 44:1541–1565. DOI: https://doi.org/10.1007/s00382-014-2236-z
Gevorgyan A, Melkonyan H, Aleksanyan T, Iritsyan A, Khalatyan Y, 2016. An assessment of observed and projected temperature changes in Armenia. Arab. J. Geosci. 9:27. DOI: https://doi.org/10.1007/s12517-015-2167-y
Gevorgyan G, Rinke K, Schultze M, Mamyan A, Kuzmin A, Belykh O, Sorokovikova E, Hayrapetyan A, Hovsepyan A, Khachikyan T, Aghayan S, Fedorova G, Krasnopeev A, Potapov S, Tikhonova I, 2020. First report about toxic cyanobacterial bloom occurrence in Lake Sevan, Armenia. Int. Rev. Hydrobiol. 105:131–142. DOI: https://doi.org/10.1002/iroh.202002060
Gutowski Jr WJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F, 2016. WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci. Model Dev. 9:4087–4095. DOI: https://doi.org/10.5194/gmd-9-4087-2016
Hansen N, 2016. The CMA Evolution Strategy: A Tutorial. ArXiv160400772 Cs Stat.
Hayes NM, Haig HA, Simpson GL, Leavitt PR, 2020. Effects of lake warming on the seasonal risk of toxic cyanobacteria exposure. Limnol. Oceanogr. Lett. 5:393–402. DOI: https://doi.org/10.1002/lol2.10164
Hipsey MR, Bruce LC, Boon C, Busch B, Carey CC, Hamilton DP, Hanson PC, Read JS, de Sousa E, Weber M, Winslow LA, 2019. A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geosci. Model Dev. 12:473–523. DOI: https://doi.org/10.5194/gmd-12-473-2019
Ho JC, Michalak AM, Pahlevan N, 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574:667–670. DOI: https://doi.org/10.1038/s41586-019-1648-7
Hovanesian R, Bronozian H, 1994. Restoration and management of Lake Sevan in Armenia: Problems and prospects. Lake Reserv. Manag. 9:178–182. DOI: https://doi.org/10.1080/07438149409354754
Hovhanissian R, Gabrielyan B, 2000. Ecological problems associated with the biological resource use of Lake Sevan, Armenia. Ecol. Eng. 16:175–180. DOI: https://doi.org/10.1016/S0925-8574(00)00102-6
Hupfer M, Lewandowski J, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93:415–432. DOI: https://doi.org/10.1002/iroh.200711054
Idso SB, 1973. On the concept of lake stability. Limnol. Oceanogr. 18:681–683. DOI: https://doi.org/10.4319/lo.1973.18.4.0681
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 151 pp.
Iturbide M, Bedia J, Herrera S, Baño-Medina J, Fernández J, Frías MD, Manzanas R, San-Martín D, Cimadevilla E, Cofiño AS, Gutiérrez JM, 2019. The R-based climate4R open framework for reproducible climate data access and post-processing. Environ. Model. Softw. 111:42–54. DOI: https://doi.org/10.1016/j.envsoft.2018.09.009
Kasten F, Czeplak G, 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Sol. Energy 24:177–189. DOI: https://doi.org/10.1016/0038-092X(80)90391-6
Kerimoglu O, Rinke K, 2013. Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resour. Res. 49:7518–7527. DOI: https://doi.org/10.1002/2013WR013520
Kirillin G, 2010. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Env. Res. 15:279–293.
Ladwig R, Furusato E, Kirillin G, Hinkelmann R, Hupfer M, 2018. Climate change demands adaptive management of urban lakes: Model-based assessment of management scenarios for Lake Tegel (Berlin, Germany). Water 10:186. DOI: https://doi.org/10.3390/w10020186
Ladwig R, Hanson PC, Dugan HA, Carey CC, Zhang Y, Shu L, Duffy CJ, Cobourn KM, 2021. Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years. Hydrol. Earth Syst. Sci. 25:1009–1032. DOI: https://doi.org/10.5194/hess-25-1009-2021
Lange S, 2019. EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). GFZ Data Services.
Magee MR, Wu CH, 2017. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 21:6253–6274. DOI: https://doi.org/10.5194/hess-21-6253-2017
Mesman JP, Ayala,AI, Adrian R, De Eyto E, Frassl MA, Goyette S, Kasparian J, Perroud M, Stelzer JAA, Pierson DC, Ibelings BW, 2020. Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events. Environ. Model. Softw. 133:104852. DOI: https://doi.org/10.1016/j.envsoft.2020.104852
Mi C, Frassl MA, Boehrer B, Rinke K, 2018. Episodic wind events induce persistent shifts in the thermal stratification of a reservoir (Rappbode Reservoir, Germany). Int. Rev. Hydrobiol. 103:71–82. DOI: https://doi.org/10.1002/iroh.201701916
Mi C, Shatwell T, Ma J, Xu Y, Su F, Rinke K, 2020. Ensemble warming projections in Germany’s largest drinking water reservoir and potential adaptation strategies. Sci. Total Environ. 748:141366. DOI: https://doi.org/10.1016/j.scitotenv.2020.141366
Michalsky JJ, 1988. The Astronomical Almanac’s algorithm for approximate solar position (1950–2050). Sol. Energy 40:227–235. DOI: https://doi.org/10.1016/0038-092X(88)90045-X
Moore TN, Mesman JP, Ladwig R, Feldbauer J, Olsson F, Pilla RM, Shatwell T, Venkiteswaran JJ, Delany AD, Dugan H, Rose KC, Read JS, 2021. LakeEnsemblR: An R package that facilitates ensemble modelling of lakes. Environ. Model. Softw. 143:05101. DOI: https://doi.org/10.1016/j.envsoft.2021.105101
Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacero, G, Liu, Z, Meester LD, Paerl H, Scheffer M, 2011. Allied attack: climate change and eutrophication. Inland Waters 1:101–105. DOI: https://doi.org/10.5268/IW-1.2.359
North RP, North RL, Livingstone DM, Köster O, Kipfer R, 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20:811-823. DOI: https://doi.org/10.1111/gcb.12371
O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, Weyhenmeyer GA, Straile D, Dong B, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey JL, Baron JS, Brooke, JD, de Eyto E, Dokulil MT, Hamilton DP, Havens K, Hetherington AL, Higgins SN, Hook S, Izmest’eva LR, Joehnk KD, Kangur K, Kasprzak P, Kumagai M, Kuusisto E, Leshkevich G, Livingstone DM, MacIntyre S, May L, Melack JM, Mueller‐Navarra DC, Naumenko M, Noges P, Noges T, North, RP, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam LG, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow SG, Schmid M, Schmidt SR, Silow E, Soylu ME, Teubner K, Verburg P, Voutilainen A, Watkinson A, Williamson CE, Zhang G, 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42:10773-10781. DOI: https://doi.org/10.1002/2015GL066235
Paerl HW, Huisman J, 2008. Blooms like it hot. Science 320:57–58. DOI: https://doi.org/10.1126/science.1155398
Poddubny SA, 2010. [Hydrophysical characterization of the water column], p. 41–47. In: D.S. Pavlov, A.V. Krylov, B.K. Gabirleyan and S.A. Poddubny (eds.), [Ecology of Lake Sevan during the period of water level rise. The results of Russian-Armenian biological expedition for hydroecological survey of Lake Sevan (Аrmenia) (2005–2009)].[Book in Russian]. Nauka DNC, Makhachkala.
Poole HH, Atkins WRG, 1929. Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc. UK 16:297–324. DOI: https://doi.org/10.1017/S0025315400029829
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Rinke K, Yeates P, Rothhaupt K-O, 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biol. 55:1674–1693. DOI: https://doi.org/10.1111/j.1365-2427.2010.02401.x
RStudio Team, 2021. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston.
Schmidt W, 1928. [Über Die Temperatur- Und Stabilitätsverhältnisse von Seen].[Article in German]. Geogr. Ann. 10:145–177. DOI: https://doi.org/10.2307/519789
Schwefel R, Gaudard A, Wüest A, Bouffard D, 2016. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): Comparing observational findings and modeling. Water Resour. Res. 52:8811–8826. DOI: https://doi.org/10.1002/2016WR019194
Sen PK, 1968. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63:1379–1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Shatwell T, Adrian R, Kirillin G, 2016. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes. Sci. Rep. 6:24361. DOI: https://doi.org/10.1038/srep24361
Shatwell T, Thiery W, Kirillin G, 2019. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 23:1533–1551. DOI: https://doi.org/10.5194/hess-23-1533-2019
Snortheim CA, Hanson PC, McMahon KD, Read JS, Carey CC, Dugan HA, 2017. Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake. Ecol. Model. 343:39–53. DOI: https://doi.org/10.1016/j.ecolmodel.2016.10.014
Steinsberger T, Wüest A, Müller B, 2021. Net ecosystem production of lakes estimated from hypolimnetic organic carbon sinks. Water Resour. Res. 57:e2020WR029473. DOI: https://doi.org/10.1029/2020WR029473
Swinbank WC, 1963. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 89:339–348. DOI: https://doi.org/10.1002/qj.49708938105
Vardanyan L, Azizyan L, Yeroyan Y, Danielyan A, 2014. The change of water resources in Lake Sevan in the context of climate change renewed scenarios, p. 123–128. In: Proceedings AASSA Regional Workshop/ Compilation by M. Nalbandyan and Armine Avetisyan; Institute of Geological Sciences of the National Academy of Sciences of the Republic of Armenia, Yerevan.
Vermishev M, Papyan S, Gabrielyan A, Harutyunyan D, Vahradyan T, 2015. Armenia’s Third National Communication on Climate Change. Republic of Armenia, Ministry of Nature Protection. Lusabats Publishing House, Yerevan.
Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J, 2014. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. 111:3228–3232. DOI: https://doi.org/10.1073/pnas.1312330110
Weber M, Boehrer B, Rinke K, 2019. Minimizing environmental impact whilst securing drinking water quantity and quality demands from a reservoir. River Res. Appl. 35:365–374. DOI: https://doi.org/10.1002/rra.3406
Wilson HL, Ayala AI, Jones ID, Rolston A, Pierson D, de Eyto E, Grossart H-P, Perga M-E, Woolway RI, Jennings E, 2020. Variability in epilimnion depth estimations in lakes. Hydrol Earth Syst Sci 24:5559–5577. DOI: https://doi.org/10.5194/hess-24-5559-2020
Winslow L, Read J, Woolway R, Bentrup J, Leach T, Zwart J. 2014. rLakeAnalyzer: Package for the analysis of lake physics. R package, Version 1.4.
Woolway RI, Jennings E, Shatwell T, Golub M, Pierson DC, Maberly SC, 2021. Lake heatwaves under climate change. Nature 589:402–407. DOI: https://doi.org/10.1038/s41586-020-03119-1
Woolway RI, Merchant CJ, 2018. Intralake Heterogeneity of thermal responses to climate change: A Study of large northern hemisphere lakes. J. Geophys. Res. Atmos. 123:3087–3098. DOI: https://doi.org/10.1002/2017JD027661
Woolway RI, Merchant CJ, 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12:271–276. DOI: https://doi.org/10.1038/s41561-019-0322-x
Woolway RI, Merchant CJ, Hoek JVD, Azorin‐Molina C, Nõges P, Laas A, Mackay EB, Jones ID, 2019. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46:11983–11992. DOI: https://doi.org/10.1029/2019GL082752
Yu W, Cestti RE, Lee JY, 2014. Toward integrated water resources management in Armenia. The World Bank. DOI: https://doi.org/10.1596/978-1-4648-0335-2

Edited by

Bardukh Gabrielyan, Scientific Center of Zoology and Hydroecology, Division of Natural Sciences, Yerevan, Armenia
Chenxi Mi, Department of Lake Research, Helmholtz Centre for Environmental Research, Magdeburg

College of Water Conservancy, Shenyang Agricultural University, Shenyang, China

Artur Gevorgyan, School of Earth, Atmosphere and Environment, Monash University, Melbourne

Hydrometeorology and Monitoring Center SNCO of the Ministry of Environment of the Republic of Armenia, Yerevan, Armenia

How to Cite

Shikhani, Muhammed, Chenxi Mi, Artur Gevorgyan, Gor Gevorgyan, Amalya Misakyan, Levon Azizyan, Klemens Barfus, Martin Schulze, Tom Shatwell, and Karsten Rinke. 2021. “Simulating Thermal Dynamics of the Largest Lake in the Caucasus Region: The Mountain Lake Sevan”. Journal of Limnology 81 (s1). https://doi.org/10.4081/jlimnol.2021.2024.