Original Articles
23 June 2025

Consequences of riparian forest invasions by alien plants for litter decomposition in small streams and ponds

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
29
Views
17
Downloads

Authors

Riparian forests play a crucial role in aquatic ecosystems by regulating light, temperature, channel stability and nutrient cycling. However, these forests are highly vulnerable to invasion by alien plant species, which can alter leaf litter inputs and decomposition dynamics, thereby impacting freshwater ecosystem functions. This study explores the decomposition rates of native black alder (Alnus glutinosa) and two riparian invaders, Japanese knotweed (Fallopia japonica) and Canada goldenrod (Solidago canadensis), in both headwater streams and pond mesocosms in Central Europe. We conducted experiments with 169 litter bags to assess decomposition rates and test the home-field advantage hypothesis. The hypothesis assumes that native litter decomposes faster due to the evolutionary adaptation of local decomposer communities. We found that invasive S. canadensis decomposed significantly faster than native A. glutinosa in both lotic and lentic environments. On the other hand, invasive F. japonica decomposed at a comparable rate (streams) or at a slower rate (ponds) than the native species. These findings contradict the home-field advantage hypothesis, suggesting that decomposition rates are primarily driven by litter nutrient content rather than geographic origin. The rapid breakdown of S. canadensis is likely driven by the low C:P ratio of its litter. The rapid decomposition of this litter may lead to short-term nutrient boosts that are quickly lost due to microbial activity, whereas the slow decomposition of F. japonica may limit immediate nutrient availability but extend their accessibility over longer periods. Overall, the invasion of riparian zones by species with litter traits distinct from those of native species can disrupt ecosystem processes, leading to cascading effects on aquatic food webs and nutrient cycling. Understanding the effects of riparian forest invasions on organic matter processing is essential for managing biodiversity and maintaining ecosystem integrity in freshwater environments.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abelho M, Graça MAS, 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195-204. DOI: https://doi.org/10.1007/BF00016391
Anda A, Simon S, Simon-Gáspár B, 2023. Impacts of wintertime meteorological variables on decomposition of Phragmites australis and Solidago canadensis in the Balaton System. Theor. Appl. Climatol. 151:1963-1979. DOI: https://doi.org/10.1007/s00704-023-04370-y
Arroita M, Flores L, Larrañaga A, Chauvet E, Elosegi A, 2018. Hydrological contingency: drying history affects aquatic microbial decomposition. Aquat. Sci. 80:31. DOI: https://doi.org/10.1007/s00027-018-0582-3
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH, 2009. Home-field advantage accelerates leaf litter decomposition in forests. Soil. Biol. Biochem. 41:606-610. DOI: https://doi.org/10.1016/j.soilbio.2008.12.022
Bailey JK, Schweitzer JA, Whitham TG, 2001. Salt cedar negatively affects biodiversity of aquatic macroinvertebrates. Wetlands. 21:442-447. DOI: https://doi.org/10.1672/0277-5212(2001)021[0442:SCNABO]2.0.CO;2
Bates D, Maechler M, Bolker B, Walker S, 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1-48. DOI: https://doi.org/10.18637/jss.v067.i01
Baxter CV, Fausch KD, Saunders WC, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biol. 50:20-220. DOI: https://doi.org/10.1111/j.1365-2427.2004.01328.x
Bärlocher F, Kendrick B, 1975. Leaf-conditioning by microorganisms. Oecologia 20:359-362. DOI: https://doi.org/10.1007/BF00345526
Bärlocher F, 2020. Leaf mass loss estimated by the litter bag technique, p. 43-51. In: F. Bärlocher, M. Gessner and M. Graça (eds.), Methods to study litter decomposition: a practical guide. Springer. DOI: https://doi.org/10.1007/978-3-030-30515-4_6
Benfield EF, Fritz KM, Tiegs SD, 2017. Leaf-litter breakdown, p. 71-82. In: G.A. Lamberti and F.R. Hauer (eds.), Methods in stream ecology. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-813047-6.00005-X
Bielecka A, Borkowska L, Królak E, 2020. Environmental changes caused by the clonal invasive plant Solidago canadensis. Ann. Bot. Fenn. 57:33-48. DOI: https://doi.org/10.5735/085.057.0105
Bottollier-Curtet M, Charcosset JY, Planty-Tabacchi AM, Tabacchi E, 2011. Degradation of native and exotic riparian plant leaf litter in a floodplain pond. Freshwater Biol. 56:1798-1810. DOI: https://doi.org/10.1111/j.1365-2427.2011.02620.x
Bottollier-Curtet M, Charcosset JY, Planty-Tabacchi AM, Tabacchi E, 2015. Chemical composition rather than plant geographic origin drives the breakdown of riparian plant litter with changes in associated invertebrate diversity. Plant Soil. 390:265-278. DOI: https://doi.org/10.1007/s11104-015-2394-8
Boyero L, Barmuta LA, Ratnarajah L, Schmidt K, Pearson RG, 2012. Effects of exotic riparian vegetation on leaf breakdown by shredders: a tropical temperate comparison. Freshw. Sci. 31:296-303. DOI: https://doi.org/10.1899/11-103.1
Braatne JH, Sullivan SMP, Chamberlain E, 2007. Leaf decomposition and stream macroinvertebrate colonisation of Japanese knotweed, an invasive plant species. Int. Rev. Hydrobiol. 92:656-665. DOI: https://doi.org/10.1002/iroh.200611009
Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, et al., 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biol. 62:833-853. DOI: https://doi.org/10.1111/fwb.12909
Canhoto C, Calapez R, Gonçalves AL, Moreira-Santos M, 2013. Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshw. Sci. 32:411-424. DOI: https://doi.org/10.1899/12-062.1
Cereghetti E, Bossart R, Bruder A, Krähenbühl A, Wolf F, Altermatt F, 2025. The year of a leaf: Tracking the fate of leaf litter and its nutrients during aquatic decomposition and consumption. Ecology. 106:e4520. DOI: https://doi.org/10.1002/ecy.4520
Coleman H, Levine J, 2007. Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biol. Invasion. 9:65-71. DOI: https://doi.org/10.1007/s10530-006-9008-6
Cornelissen JH, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, et al., 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143:191-200. DOI: https://doi.org/10.1046/j.1469-8137.1999.00430.x
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11:1065-1071. DOI: https://doi.org/10.1111/j.1461-0248.2008.01219.x
Cummins KW, Wilzbach MA, Gates DM, Perry JB, Taliaferro WB, 1989. Shredders and riparian vegetation: leaf litter that falls into streams influences communities of stream invertebrates. BioScience. 39:24-30. DOI: https://doi.org/10.2307/1310804
da Silva GVR, Castañeda-Ruiz RF, Malosso E, 2019. Comparison of aquatic hyphomycetes communities between lotic and lentic environments in the Atlantic rain forest of Pernambuco, Northeast Brazil. Fungal Biol. 123:660-668. DOI: https://doi.org/10.1016/j.funbio.2019.05.013
Daehler CC, 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu. Rev. Ecol. Evol. S. 34:183-211. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132403
Danger M, Arce-Funck J, Beck M, Crenier C, Felten V, Wang Z, Maunoury-Danger F, 2021. Stoichiometry of plant litter decomposition in stream ecosystems, p. 23-49. In: C.M. Swan, L. Boyero and C. Canhoto (eds.), The ecology of plant litter decomposition in stream ecosystems. Springer Nature. DOI: https://doi.org/10.1007/978-3-030-72854-0_3
Dangles O, Jonsson M, Malmqvist B, 2002. The importance of detritivore species diversity for maintaining stream ecosystem functioning following the invasion of a riparian plant. Biol. Invasions. 4:441-446. DOI: https://doi.org/10.1023/A:1023698121141
Davies JN, Boulton AJ, 2009. Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams. J. N. Am. Benthol. Soc. 28:491-503. DOI: https://doi.org/10.1899/07-073.1
Dekanová V, Svitková I, Novikmec M, Svitok M, 2021. Litter breakdown of invasive alien plant species in a pond environment: Rapid decomposition of Solidago canadensis may alter resource dynamics. Limnologica 90:125911. DOI: https://doi.org/10.1016/j.limno.2021.125911
Dekanová V, Novikmec M, Svitková I, Svitok M, 2023. Functional diversity of shredders, not species richness, drives the decomposition rate of leaf litter in ponds. Front. Ecol. Evol. 11:1286672. DOI: https://doi.org/10.3389/fevo.2023.1286672
Dong LJ, Yu HW, He WM, 2015. What determines positive, neutral and negative impacts of Solidago canadensis invasion on native plant species richness? Sci. Rep. 5:16804. DOI: https://doi.org/10.1038/srep16804
Fennel M, Wade M, Bacon KL, 2018. Japanese knotweed (Fallopia japonica): an analysis of capacity to cause structural damage (compared to other plants) and typical rhizome extension. PeerJ. 6:e5246. DOI: https://doi.org/10.7717/peerj.5246
Ferreira V, Larrañaga A, Gulis V, Basaguren A, Elosegi A, Graça MAS, Pozo J, 2015. The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest. Ecol. Manag. 335:129-138. DOI: https://doi.org/10.1016/j.foreco.2014.09.013
Fogelman KJ, Bilger MD, Holt JR, Matlaga DP, 2018. Decomposition and benthic macroinvertebrate communities of exotic Japanese knotweed (Fallopia japonica) and American sycamore (Platanus occidentalus) detritus within the Susquehanna River. J. Freshwater Ecol. 33:299-310. DOI: https://doi.org/10.1080/02705060.2018.1458660
Foulquier A, Dehedin A, Piscart C, Montuelle B, Marmonier P, 2014. Habitat heterogeneity influences the response of microbial communities to severe low‐flow periods in alluvial wetlands. Freshwater Biol. 59:463-476. DOI: https://doi.org/10.1111/fwb.12278
Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson, JH, Xenopoulos MA, Yoshida T, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol. Lett. 9:774-779. DOI: https://doi.org/10.1111/j.1461-0248.2006.00919.x
García L, Richardson JS, Pardo I, 2012. Leaf quality influences invertebrate colonization and drift in a temperate rainforest stream. Can. J. Fish. Aquat. Sci. 69:1663-1673. DOI: https://doi.org/10.1139/f2012-090
García L, Pardo I, Richardson JS, 2014. A cross-continental comparison of stream invertebrate community assembly to assess convergence in forested headwater streams. Aquat. Sci. 76:29-40. DOI: https://doi.org/10.1007/s00027-013-0308-5
Gessner MO, Chauvet E, Dobson M, 1999. A perspective on leaf litter breakdown in streams. Oikos. 85:377-384. DOI: https://doi.org/10.2307/3546505
Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K, 2007. Fungal decomposers of plant litter in aquatic ecosystems, p. 301-324. In: C.P. Kubicek and I.S. Druzhinina (eds.), The mycota, environmental and microbial relationships. Springer.
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ, 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob. Change Biol. 6:751-765. DOI: https://doi.org/10.1046/j.1365-2486.2000.00349.x
Graça MAS, 2001. The role of invertebrate on leaf litter decomposition in streams — a review. Int. Rev. Hydrobiol. 86:383-393. DOI: https://doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D
Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol. 46:947-957. DOI: https://doi.org/10.1046/j.1365-2427.2001.00729.x
Harner MJ, Crenshae CL, Abelho M, Sursova M, Shah JJF, Sinsabaugh RL, 2009. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19:1135-1146. DOI: https://doi.org/10.1890/08-0294.1
Hartig F, 2022. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6
Hieber M, Gessner MO, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology. 83:1026-1038. DOI: https://doi.org/10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2
Hill MJ, Thornhill I, Tiegs SD, Castro-Castellon A, Hernández-Avilés JS, Daw A, et al., 2022. Organic-matter decomposition in urban stream and pond habitats. Ecol. Indic. 142:109232. DOI: https://doi.org/10.1016/j.ecolind.2022.109232
Hrivnák R, Svitok M, Kochjarová J, Jarolímek I, Machava J, Senko D, Slezák M, 2020. Drivers of plant species composition in alder-dominated forests with contrasting connectivity. Wetl. Ecol. Manag. 28:137-150. DOI: https://doi.org/10.1007/s11273-019-09700-4
Hrivnák R, Svitok M, Hegedüšová Vantarová K, Jarolímek I, Kochjarová J, Májeková J, Slezák M, 2024. Environmental thresholds for plant species richness of black alder (Alnus glutinosa) forests in Central Europe. Wetl. Ecol. Manag. 32:591-604. DOI: https://doi.org/10.1007/s11273-024-09997-w
Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ, 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol. Evol. 22:316-322. DOI: https://doi.org/10.1016/j.tree.2007.02.015
Kennedy KT, El‐Sabaawi RW, 2017. A global meta‐analysis of exotic versus native leaf decay in stream ecosystems. Freshwater Biol. 62:977-989. DOI: https://doi.org/10.1111/fwb.12918
Kominoski JS, Follstad Shah JJ, Canhoto C, Fischer DG, Giling DP, González E, et al., 2013. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11:423-432. DOI: https://doi.org/10.1890/120056
Kuglerová L, García L, Pardo I, Mottiar Y, Richardson JS, 2017. Does leaf litter from invasive plants contribute the same support of a stream ecosystem function as native vegetation. Ecosphere 8:e01779. DOI: https://doi.org/10.1002/ecs2.1779
Kuznetsova A, Brockhoff PB, Christensen RHB, 2017. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82:1-26. DOI: https://doi.org/10.18637/jss.v082.i13
Langhans SD, Tiegs SD, Gessner MO, Tockner K, 2008. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat. Sci. 70:337-346. DOI: https://doi.org/10.1007/s00027-008-8062-9
Lecerf A, Patfield D, Boiche A, Riipinen MP, Chauvet E, Dobson M, 2007. Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia japonica). Can. J. Fish. Aquat. Sci. 64:1273-1283. DOI: https://doi.org/10.1139/f07-092
Leishman MR, Haslehurst T, Ares A, Baruch Z, 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176:635-643. DOI: https://doi.org/10.1111/j.1469-8137.2007.02189.x
Lenth RV, 2016. Least-squares means: the R package lsmeans. J. Stat. Softw. 69:1-33. DOI: https://doi.org/10.18637/jss.v069.i01
Lenth RV, 2022. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.4-1.
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D, 2021. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 6:3139. DOI: https://doi.org/10.21105/joss.03139
McNeish RE, Benbow ME, McEwan RW, 2012. Riparian forest invasion by a terrestrial shrub (Lonicera maackii) impacts aquatic biota and organic matter processing in headwater streams. Biol. Invasions. 14:1881-1893. DOI: https://doi.org/10.1007/s10530-012-0199-8
Medeiros AO, Pascoal C, Graça MAS, 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biol. 54:142-149. DOI: https://doi.org/10.1111/j.1365-2427.2008.02101.x
Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansi F, et al., 2012. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology. 93:770-782. DOI: https://doi.org/10.1890/11-0721.1
Naiman RJ, Décamps H, 1997. The ecology of interfaces: riparian zones. Annu. Rev. Ecol. Evol. S. 28:621-658. DOI: https://doi.org/10.1146/annurev.ecolsys.28.1.621
Nakagawa S, Johnson PC, Schielzeth H, 2017. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface. 14:20170213. DOI: https://doi.org/10.1098/rsif.2017.0213
Pascoal C, Fernandes I, Seena S, Danger M, Ferreira V, Cássio F, 2021. Linking microbial decomposer diversity to plant litter decomposition and associated processes in streams, p. 163-192. In: C.M. Swan, L. Boyero and C. Canhoto (eds.), The ecology of plant litter decomposition in stream ecosystems. Springer. DOI: https://doi.org/10.1007/978-3-030-72854-0_9
Pattee E, Chergui H, 1994. On the incomplete breakdown of submerged leaves. Int. Ver. The. 25:1545-1548. DOI: https://doi.org/10.1080/03680770.1992.11900437
Petersen RC, Cummins KW, 1974. Leaf processing in a woodland stream. Freshwater Biol. 4:343-368. DOI: https://doi.org/10.1111/j.1365-2427.1974.tb00103.x
Pfeifer-Meister L, Cole E, Roy B, Bridgham S, 2008. Abiotic constraints on the competitive ability of exotic and native grasses in a Pacific Northwest prairie. Oecologia 155:357-366. DOI: https://doi.org/10.1007/s00442-007-0909-6
Pinheiro JC, Bates DM, 2000. Mixed-effects models in S and S-PLUS. Springer, Cham: 544 pp. DOI: https://doi.org/10.1007/978-1-4419-0318-1
R Core Team, 2022. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing.
Reinhart KO, VandeVoort R, 2006. Effect of native and exotic leaf litter on macroinvertebrate communities and decomposition in a western Montana stream. Divers. Distrib. 12:776-781. DOI: https://doi.org/10.1111/j.1472-4642.2006.00252.x
Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ, 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 13:126-139. DOI: https://doi.org/10.1111/j.1366-9516.2006.00314.x
Ringold PL, Magee TK, Peck DV, 2008. Twelve invasive plant taxa in US western riparian ecosystems. J. N. Am. Benthol. Soc. 27:949-966. DOI: https://doi.org/10.1899/07-154.1
Serra MN, Albariño R, Villanueva VD, 2013. Invasive Salix fragilis alters benthic invertebrate communities and litter decomposition in northern Patagonian streams. Hydrobiologia 701:173-188. DOI: https://doi.org/10.1007/s10750-012-1270-2
Shaw RH, Seiger LA, 2002. Japanese knotweed, p. 159-166. In: R.G. van Driesche, S. Lyon, B. Blossey and M.S. Hoddle, R. Reardon (eds.), Biological control of invasive plants in the Eastern United States. USDA ForestService.
Siders AC, Compson ZG, Hungate BA, Dijkstra P, Koch GW, Wymore AS, et al., 2018. Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere 9:e02340. DOI: https://doi.org/10.1002/ecs2.2340
Simon S, Simon-Gáspár B, Anda A, 2023. Carbon dioxide emission and its impacting factor from goldenrod (Solidago canadensis) and bulrush (Typha angustifolia) decomposition during the winter period. Ecohydrol. Hydrobiol. 23:177-185. DOI: https://doi.org/10.1016/j.ecohyd.2023.01.002
Skokanová K, Španiel S, Šingliarová B, Mereda P, Hodálová I, Svitok M, 2024. Contrasting invasion patterns of two closely related Solidago alien species. J. Biogeogr. 51:1679-1692. DOI: https://doi.org/10.1111/jbi.14785
Slezák M, Farkašovská Š, Hrivnák R, 2020. Non-native plant species in alder-dominated forests in Slovakia: what does the regional- and the local-scale approach bring? Folia Oecol. 47:100-108. DOI: https://doi.org/10.2478/foecol-2020-0012
Stoler AB, Relyea RA, 2020. Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature. Ecol. Monogr. 90:e01400. DOI: https://doi.org/10.1002/ecm.1400
Svitková I, Svitok M, Čejka T, Širka P, Galvánek D, Gömöry D, et al., 2024. Contrasting diversity patterns of native and alien species across multiple taxa in Central European river corridors. Ecol. Indic. 169:112859. DOI: https://doi.org/10.1016/j.ecolind.2024.112859
Tibbets TM, Molles MC, 2005. C:N:P stoichiometry of dominant riparian trees and arthropods along the Middle Rio Grande. Freshwater Biol. 50:1882-1894. DOI: https://doi.org/10.1111/j.1365-2427.2005.01465.x
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE, 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37:130-137. DOI: https://doi.org/10.1139/f80-017
Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Springer, Cham: 260 pp. DOI: https://doi.org/10.1007/978-3-319-24277-4_9
Yang R, Dong J, Li C, Wang L, Quan Q, Liu J, 2021. The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change. PLoS One 16:e0250880. DOI: https://doi.org/10.1371/journal.pone.0250880
Zelnik I, Mavrič Klenovšek V, Gaberščik A, 2020. Complex undisturbed riparian zones are resistant to colonisation by invasive alien plant species. Water (Basel) 12:345. DOI: https://doi.org/10.3390/w12020345
Zhu X, Li W, Shao H, Tang S, 2022. Selected aspects of invasive Solidago canadensis with an emphasis on its allelopathic abilities: a review. Chem. Biodivers. 19:e202200728. DOI: https://doi.org/10.1002/cbdv.202200728
Zukswert JM, Prescott CE, 2017. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185:305-316. DOI: https://doi.org/10.1007/s00442-017-3951-z

Edited by

Diego Fontaneto, CNR-IRSA Water Research Institute, Verbania-Pallanza, Italy

Supporting Agencies

Slovak Research and Development Agency, European Regional Development Fund
Vladimíra Dekan Carreira, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen

cE3c - Centre for Ecology, Evolution and Environmental Changes; CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Portugal

Marek Svitok, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen

Faculty of Forestry and Wood Sciences, University of Life Sciences Prague, Praha-Suchdol, Czech Republic.
Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia

How to Cite



“Consequences of Riparian Forest Invasions by Alien Plants for Litter Decomposition in Small Streams and Ponds”. 2025. Journal of Limnology 84 (June). https://doi.org/10.4081/jlimnol.2025.2223.