How the catchment-river-lake continuum shapes the downstream water quality

Submitted: 23 October 2023
Accepted: 11 January 2024
Published: 31 January 2024
Abstract Views: 299
PDF: 249
HTML: 2
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lakes play a crucial role in the nutrient cycling of Earth, despite covering only a small fraction of the planet’s surface. Their interactions with their surrounding catchment areas significantly impact ecosystems and regulatory services. The connection between a lake and its catchment, especially the drainage ratio (catchment area to lake surface area), shapes the characteristics of lakes and their response to catchment processes. Within the catchment area, geological, land cover, and land use factors influence the composition of stream water that flows into the lake. These factors play a role in transporting various substances, both organic and inorganic, to the streams. Lakes act as dynamic filters, altering the chemical composition of water that flows through them. This study aims to investigate how a large, shallow lake impacts the quality of the river water as it passes through. It builds on an analysis of nutrient (carbon, nitrogen, phosphorus, silicon) fluxes into Lake Võrtsjärv, using six years of monthly monitoring data from five main inflows and the outflow. The research explores how catchment characteristics and hydrology affect nutrient concentrations and loadings into the lake, as well as the retention or release of substances by the lake. Findings reveal that catchment characteristics, such as land use and forest cover, significantly influence water quality parameters. Different inflows showed variations in water quality, and annual variations were observed, largely correlated with precipitation and discharge. Võrtsjärv plays a critical role in retaining or releasing nutrients, with varying impacts depending on the water budget of the lake. In years with a positive water balance, the lake retains all nutrients, whereas in dry years only inflowing N and P loads exceed their outflow. Overall, this study underscores the importance of lakes as integral components of catchment ecosystems, shedding light on their complex interactions with the environment and the implications for water quality. It emphasizes the need for careful consideration of land use and hydrological factors in managing and preserving these vital aquatic systems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abell JM, Özkundakci D, Hamilton DP, Miller SD, 2011. Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Mar Freshwater Res 62:162-175. DOI: https://doi.org/10.1071/MF10180
Ågren A, Buffam I, Bishop K, Laudon H, 2010. Modelling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. J Geophys Res 115:G01012. DOI: https://doi.org/10.1029/2009JG001013
Asmala E, Carstensen J, Räike A, 2019. Multiple anthropogenic drivers behind upward trends in organic carbon concentrations in boreal rivers. Environ Res Lett 14:124018. DOI: https://doi.org/10.1088/1748-9326/ab4fa9
Baker A, Cumberland S, Hudso N, 2008. Dissolved and total organic and inorganic carbon in some British rivers. Area 40:117-127. DOI: https://doi.org/10.1111/j.1475-4762.2007.00780.x
Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ, 2014. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J Great Lakes Res 40:502-517. DOI: https://doi.org/10.1016/j.jglr.2014.05.001
Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ, 2009 The boundless carbon cycle. Nat Geosci 2:598-600. DOI: https://doi.org/10.1038/ngeo618
Bouraoui F, Grizzetti B, Adelsköld G, Behrendt H, de Miguel I, Silgram M, et al., 2009. Basin characteristics and nutrient losses: the EUROHARP catchment network perspective. J Environ Monit 11:515-525. DOI: https://doi.org/10.1039/b822931g
Bradley E, 1979. Bootstrap methods: another look at the jack knife. Ann Stat 7:1-26. DOI: https://doi.org/10.1214/aos/1176344552
Carey JC, Fulweiler RW, 2016. Human appropriation of biogenic silicon - the increasing role of agriculture. Funct Ecol 30:1331-1339. DOI: https://doi.org/10.1111/1365-2435.12544
Carey JC, Jankowski K Julian P II, Sethna LR, Thomas PK, Rohweder J, 2019. Exploring silica stoichiometry on a large floodplain riverscape. Front Ecol Evol 7:346. DOI: https://doi.org/10.3389/fevo.2019.00346
Chaplot V, Mutema M, 2021. Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis. J Hydrol 603:126941. DOI: https://doi.org/10.1016/j.jhydrol.2021.126941
Clark JM, Chapman PJ, Adamson J, Stuart NL, 2005. Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Change Biol 11:791-809. DOI: https://doi.org/10.1111/j.1365-2486.2005.00937.x
Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, et al., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171-184. DOI: https://doi.org/10.1007/s10021-006-9013-8
Cook PLM, Aldridge KT, Lamontagne S, Brookes JD, 2010. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system. Biogeochemistry 99:49-63. DOI: https://doi.org/10.1007/s10533-009-9389-6
Cremona F, Kõiv T, Nõges P, Pall P, E-I Rõõm, Feldmann T, et al., 2014. Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731:109-123. DOI: https://doi.org/10.1007/s10750-013-1686-3
Cremona F, Laas A, Arvola L, Pierson D, Nõges P, Nõges T, 2016. Numerical exploration of the planktonic to benthic primary production ratios in lakes of the Baltic Sea Catchment. Ecosystems 19:1386-1400. DOI: https://doi.org/10.1007/s10021-016-0006-y
Cremona F, Laas A, Hanson PC, Sepp M, Nõges P, Nõges T, 2019. Drainage ratio as a strong predictor of allochthonous carbon budget in hemiboreal lakes. Ecosystems 22:805-817. DOI: https://doi.org/10.1007/s10021-018-0304-7
Dawson JJC, Billett MF, Hope M, Palmer DS, Deacon CM, 2004. Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70:71-92. DOI: https://doi.org/10.1023/B:BIOG.0000049337.66150.f1
Duan S, Kaushal SS, Rosenfeldt EJ, Huang J, Murthy S, 2021. Changes in concentrations and source of nitrogen along the Potomac River with watershed land use. Appl Geochem 131:105006. DOI: https://doi.org/10.1016/j.apgeochem.2021.105006
Einola E, Rantakari M, Kankala P, Kortelainen P, Ojala A, Pajunen H, et al., 2011. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J Geophys Res 16:G03009. DOI: https://doi.org/10.1029/2010JG001636
Einsele G, Yan J, Hinderer M, 2001. Atmospheric carbon burial in modern lake basin and its significance for the global carbon budget. Global Planet Change 30:167-195. DOI: https://doi.org/10.1016/S0921-8181(01)00105-9
European Commission, 2000. Directive of the European Parliament and of the Council. 2000/60EC Establishing a Framework for Community Action in the Field of Water Policy. European Commission PE-CONS 3639/1/100 Rev 1. Available from: https://eur-lex.europa.eu/eli/dir/2000/60/oj
Finlay K, Leavitt PR, Wissel B, Praire YT, 2009. Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the nothern Great Plains. Limnol Oceanogr 54:2553-2564. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2553
Garnier J, Billen G, Lassaletta L, Vigiak O, Nikolaidis NP, Grizzetti B, 2021. Hydromorphology of coastal zone and structure of watershed agro-food system are main determinants of coastal eutrophication. Environ Res Lett 16:023005. DOI: https://doi.org/10.1088/1748-9326/abc777
Giesler R, Lyon SW, Mörth CM, Karlsson J, Karlsson EM, Jantze EJ, et al., 2014. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences 11:525-537. DOI: https://doi.org/10.5194/bg-11-525-2014
Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe P-A, Mayorga E, et al., 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143-157. DOI: https://doi.org/10.1007/s10533-008-9272-x
Harrison JA, Frings PJ, Beusen AHW, Conley DJ, McCrackin ML, 2012. Global importance, patterns, and control of dissolved silica retention in lakes and reservoirs. Global Biogeocheml Cy 26:BG2037. DOI: https://doi.org/10.1029/2011GB004228
Horppila J, Holmroos H, Niemistö J, Tammeorg O, 2019. Lake catchment characteristics and external P load - cultivated area/lake area ratio as a tool for evaluating the risk of eutrophication from land use information. Boreal Environ Res 24:13-23.
Hruška J, Krám P, McDowell WH, Oulehle F, 2009. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environ Sci Technol 43:4320-4326. DOI: https://doi.org/10.1021/es803645w
Hu Y, Long CM, Wang Y-C, Kerkez B, Scavia D, 2019. Urban total phosphorus loads to the St. Clair-Detroit River System. J Great Lakes Res45:1142-1149. DOI: https://doi.org/10.1016/j.jglr.2019.09.009
Jabbar FK, Grote K, 2019. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA. Environ Sci Pollut Res 26:1487-1506. DOI: https://doi.org/10.1007/s11356-018-3682-7
Janatian N, Olli, K Nõges P, 2021. Phytoplankton responses to meteorological and hydrological forcing at decadal to seasonal time scales. Hydrobiologia 848:2745-2759. DOI: https://doi.org/10.1007/s10750-021-04594-x
Jantze E, Laudon H, Dahlke H, Lyon S, 2015. Spatial variability of dissolved organic and inorganic carbon in sub-arctic headwater streams. Arctic Antarctic Alpine Res 47:529-546. DOI: https://doi.org/10.1657/AAAR0014-044
Järvet A, 2004. Influence of hydrological factors and human impact on the ecological state of shallow Lake Voõrtsjaäv in Estonia. PhD Thesis, Universitatis Tartuensis, Tartu. DOI: https://doi.org/10.37040/geografie2004109020129
Järvet A, Karukäpp R, Arold I, 2004. Location and physicogeographical conditions of the catchment area, p. 11-28. In: J Haberman, E Pihu and A. Raukas (eds.), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn.
Khan H, Laas A, Marcé R, Obrador B, 2020. Major effects of alkalinity on the relationship between metabolism and dissolved inorganic carbon dynamics in lakes. Ecosystems 23:1566-1580. DOI: https://doi.org/10.1007/s10021-020-00488-6
Kikuchi T, Anzai T, Ouchi T, Okamoto K, Terajima Y, 2023. Assessing the impact of watershed characteristics and management on nutrient concentrations in tropical rivers using a machine learning method. Environ Pollut 316:120599. DOI: https://doi.org/10.1016/j.envpol.2022.120599
Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T, 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453-468. DOI: https://doi.org/10.1007/s00027-006-0833-6
Kupiec JM, Staniszewski R, Jusik S, 2021. Assessment of the impact of land use in an agricultural catchment area on water quality of lowland rivers. PeerJ 9:e10564. DOI: https://doi.org/10.7717/peerj.10564
Kuriata-Potasznik A, Szymczyk S, Skwierawski A, 2020. Influence of cascading river–lake systems on the dynamics of nutrient circulation in catchment areas. Water 12:1144. DOI: https://doi.org/10.3390/w12041144
Magin K, Somlai-Haase C, Schäfer RB, Lorke A, 2017. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments. Biogeosci Discuss 14:1-18. DOI: https://doi.org/10.5194/bg-14-5003-2017
Mattsson T, Kortelainen P, Räike A, 2005. Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76:373-394. DOI: https://doi.org/10.1007/s10533-005-6897-x
Maranger R, Jones SE, Cotner JB, 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnol Oceanogr Lett 3:89-101. DOI: https://doi.org/10.1002/lol2.10080
Miidel A, Raukas A, Vaher R, 2004. Geology of the lake basin, p. 33-47. In: J Haberman, E Pihu and A. Raukas (eds.), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn.
Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, et al., 2011. Allied attack: climate change and eutrophication. Inland Waters 1:101-105. DOI: https://doi.org/10.5268/IW-1.2.359
Nõges P, Cremona F, Laas A, Martma T, Rõõm E-I, Toming K, et al, 2016. Role of a productive lake in carbon sequestration within a calcareous catchment. Sci Total Environ 550:225-230. DOI: https://doi.org/10.1016/j.scitotenv.2016.01.088
Nõges P, Järvet A, 1998. The role of L. Võrtsjärv in the matter circulation of the landscape. Limnologica 28:13-20.
Nõges, P, Järvet A, Tuvikene L, Nõges T, 1998. The budget of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 363:219-227. DOI: https://doi.org/10.1007/978-94-017-1493-8_17
Nõges P, Nõges T, 2012. Võrtsjärv Lake in Estonia, p. 850-861. In: L Bengtsson RW Herschy, and RW Fairbridge (eds.), Encyclopedia of Lakes and Reservoirs. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-4410-6_228
Nõges P, Nõges T, 2014. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia 731:5-18. DOI: https://doi.org/10.1007/s10750-013-1572-z
Nõges P, Nõges T, Adrian R, Weyhenmeyer GA, 2008. Silicon load and the development of diatoms in three river-lake systems in countries surrounding the Baltic Sea. Hydrobiologia 599:67-76. DOI: https://doi.org/10.1007/s10750-007-9194-y
Nõges T, Janatian N, Laugaste R, Nõges P, 2020. Post-soviet changes in nitrogen and phosphorus stoichiometry in two large non-stratified lakes and the impact on phytoplankton. Global Ecol Conservn 24:e01369. DOI: https://doi.org/10.1016/j.gecco.2020.e01369
Nõges T, Tuvikene L, Nõges P, 2010. Contemporary trends of temperature, nutrient loading, and water quality in large Lakes Peipsi and Võrtsjärv, Estonia. Aquat Ecosyst Health 13:143-153. DOI: https://doi.org/10.1080/14634981003788987
Ockenden M, Deasy CE, Benskin CMH, Beven KJ, Burke S, Collins AL, et al., 2016. Changing climate and nutrient transfers: evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci Total Environ 548:325-339. DOI: https://doi.org/10.1016/j.scitotenv.2015.12.086
Onderka M, Wrede S, Rodný M, Pfister L, Hoffmann L, Krein A, 2012. Hydrogeologic and landscape controls of dissolved inorganic nitrogen (DIN) and dissolved silica (DSi) fluxes in heterogeneous catchments. J Hydrol 450-451:36-47. DOI: https://doi.org/10.1016/j.jhydrol.2012.05.035
Pall P, Vilbaste S, Kõiv T, Kõrs A, Käiro K, Laas A, et al., 2011. Fluxes of carbon and nutrients through the inflows and outflow of Lake Võrtsjärv, Estonia. Eston J Ecol 60:39-53. DOI: https://doi.org/10.3176/eco.2011.1.04
Piirsoo K, Viik M, Kõiv T, Käiro K, Laas A, Nõges T, et al., 2012. Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Võrtsjärv, Estonia. J Hydrol 475:306-313. DOI: https://doi.org/10.1016/j.jhydrol.2012.10.015
Piirsoo K, Laas A, Meinson P, Nõges P, Pall P, Viik M, et al., 2018. Changes in particulate organic matter passing through a large shallow lowland lake. Proc Eston Acad Sci 67:93-105. DOI: https://doi.org/10.3176/proc.2018.1.05
Raymond PA, Oh N-H O, 2007. An empirical study of climatic controls on riverine C export from three major U.S. watersheds. Global Biogeochemi Cy 21:GB2022. DOI: https://doi.org/10.1029/2006GB002783
Raymond PA, Saiers JE, Sobczak W., 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse- shunt concept. Ecology 97:5-16. DOI: https://doi.org/10.1890/14-1684.1
Rehn L, Sponseller RA, Laudon H, Wallin MB, 2023. Long-term changes in dissolved inorganic carbon across boreal streams caused by altered hydrology. Limnol Oceanogr 68:409-423. DOI: https://doi.org/10.1002/lno.12282
Rinaldi PN, 2013. Relationships between landscape features and nutrient concentrations in an agricultural watershed in Southwestern Georgia: An integrated geographic information systems approach. MS Thesis, Georgia State University.
Rogora M, Mosello R, Calderoni A, Barbieri A, 2006. Nitrogen budget of a subalpine lake in northwestern Italy: the role of atmospheric input in the upward trend of nitrogen concentrations. SIL Proceedings 1922-2010, 29:2027-2030. DOI: https://doi.org/10.1080/03680770.2006.11903045
Röman E, Ekholm P, Tattari S, Koskiaho J, Kotamäki N, 2018. Catchment characteristics predicting nitrogen and phosphorus losses in Finland. River Res Appl 34:397-405. DOI: https://doi.org/10.1002/rra.3264
Rothwell JJ, Dise NB, Taylor KG, Allott TEH, Scholefield P, Davies H, Neal C, 2011. Predicting river water quality across North West England using catchment characteristics. J Hydrol 395:153-162. DOI: https://doi.org/10.1016/j.jhydrol.2010.10.015
Roulet NT, Lafleur PM, Richard PH, Moore TR, Humphreys ER, Bubier J, 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397-411. DOI: https://doi.org/10.1111/j.1365-2486.2006.01292.x
Sarkkola S, Koivusalo H, Laurén A, Kortelainen P, Mattsson T, Palviainen M, et al., 2009. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci Total Environ 408:92-101. DOI: https://doi.org/10.1016/j.scitotenv.2009.09.008
SAS Institute Inc., 2008. SAS/STAT® 9.2. User’s Guide. SAS Institute Inc, Cary.
Scibona A, Nizzoli D, Hupfer M, Valerio G, Pilotti M, Viaroli P, 2022. Decoupling of silica, nitrogen and phosphorus cycling in a meromictic subalpine lake (Lake Iseo, Italy). Biogeochemistry 159:371-392. DOI: https://doi.org/10.1007/s10533-022-00933-9
Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208-1219. DOI: https://doi.org/10.4319/lo.2007.52.3.1208
Stets EG, Striegl RG, Aiken GR, Rosenberr DO, WinterTC, 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. DOI: https://doi.org/10.1029/2008JG000783
Suresh K, Tang T, van Vliet MTH, Bierkens MFP, Strokal M, Sorger-Domenigg F, Wada Y, 2023. Recent advancement in water quality indicators for eutrophication in global freshwater lakes. Environ Res Lett 18:063004. DOI: https://doi.org/10.1088/1748-9326/acd071
Tamm T, Nõges T, Järvet A, Bouraoui F, 2008. Contribution of DOC from surface and groundflow into Lake Võrtsjärv (Estonia). Hydrobiologia 599:213-220. DOI: https://doi.org/10.1007/s10750-007-9189-8
Tammeorg O, Nürnberg GK, Nõges P, Niemistö J, 2022a. The role of humic substances in sediment phosphorus release in northern lakes. Sci Total Environ 833:155257. http://dx.doi.org/10.1016/j.scitotenv.2022.155257. DOI: https://doi.org/10.1016/j.scitotenv.2022.155257
Tammeorg O, Nürnberg GK, Tõnno I, Kisand A, Tuvikene L, Nõges T, Nõges P, 2022b. Sediment phosphorus mobility in Võrtsjärv, a large shallow lake: Insights from phosphorus sorption experiments and long-term monitoring. Sci Total Environ 829:154572. DOI: https://doi.org/10.1016/j.scitotenv.2022.154572
Tammets T, Jaagus J, 2013. Climatology of precipitation extremes in Estonia using the method of moving precipitation totals. Theor Appl Climatol 111:623-639. DOI: https://doi.org/10.1007/s00704-012-0691-1
TIBCO Software Inc., 2017. Statistica (Data Analysis Software System), Version 13. Available from: http://statistica.io
Toming K, Tuvikene L, Vilbaste S, Agasild H, Kisand A, Viik M, et al., 2013. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnol Oceanogr 58:1259-1270. DOI: https://doi.org/10.4319/lo.2013.58.4.1259
Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik LJ, 2020. Predicting lake dissolved organic carbon at a global scale. Sci Rep 10:8471. DOI: https://doi.org/10.1038/s41598-020-65010-3
Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298-2314. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2298
Tye AM, Williamson JL, Jarvie HP, Dise NB, Lapworth DJ, Monteith D, et al., 2022. Dissolved inorganic carbon export from rivers of Great Britain: Spatial distribution and potential catchment-scale controls. J Hydrol 615:128677. DOI: https://doi.org/10.1016/j.jhydrol.2022.128677
Vachon D, Sponseller RA, Karlsson J, 2021. Integrating carbon emission, accumulation and transport in inland waters to understand their role in the global carbon cycle. Glob Change Biol 27:719-727. DOI: https://doi.org/10.1111/gcb.15448
Verburg P, Horrox J, Chaney E, Rutherford JC, Quinn JM, Wilcock RJ, Howard-Williams CW, 2013. Nutrient ratios, differential retention, and the effect on nutrient limitation in a deep oligotrophic lake. Hydrobiologia 718:119-130. DOI: https://doi.org/10.1007/s10750-013-1609-3
Vilbaste S, Pall P, Viik M, 2015. Hydrochemical database of inflows and outflow of Võrtsjärv. Freshwater Metadata J 6:1-7. DOI: https://doi.org/10.15504/fmj.2015.6
Volk C, Wood L, Johnson B, Robinson J, Zhu HW, Kaplan L, 2002. Monitoring dissolved organic carbon in surface and drinking waters. J Environ Monit 4:43-47. DOI: https://doi.org/10.1039/b107768f
Wang Y, Kong X, Peng Z, Zhang H, Liu G, Hu W, Zhou Z, 2020. Retention of nitrogen and phosphorus in Lake Chaohu, China: implications for eutrophication management. Environ Sci Pollut Res 27:41488-41502. DOI: https://doi.org/10.1007/s11356-020-10024-7
Westhorpe DP, Mitrovic SM, 2012. Dissolved organic carbon mobilisation in relation to variable discharges and environmental flows in a highly regulated lowland river. Mar Freshwater Res 63:1218-1230. DOI: https://doi.org/10.1071/MF12122

Edited by

Diego Copetti, CNR-IRSA Water Research Institute, Brugherio, Italy

Supporting Agencies

Estonian Research Council grants PRG709 and PRG1167, European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963

How to Cite

Vilbaste, Sirje, Peeter Pall, Marina Haldna, Peeter Nõges, Kai Piirsoo, and Tiina Nõges. 2024. “How the Catchment-River-Lake Continuum Shapes the Downstream Water Quality”. Journal of Limnology 83 (1). https://doi.org/10.4081/jlimnol.2024.2167.

Similar Articles

You may also start an advanced similarity search for this article.