Oligochaete distribution in alpine freshwaters: not a mere question of altitude

Submitted: 20 June 2023
Accepted: 22 September 2023
Published: 4 October 2023
Abstract Views: 958
PDF: 302
Supplementary: 33
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Alpine freshwater biodiversity is at risk of extinction due to climate change and some species could remain undescribed before they go extinct. These species are not yet included in red lists of protection by law, such as annelids in alpine habitats. Within this context, we studied the annelid fauna in 20 sites located between 1223 and 2703 m asl, belonging to different habitat types (kryal, glacio-rhithral, non-glacial streams, springs, littoral lake zone), in three glaciated catchments of the Italian Alps (Noce Bianco, Careser and Conca-Carè Alto; Trentino Province). The aim of this study was to describe the annelid communities of the different habitat types collected with different sampling methods (kick sampling and drift) and investigate the relationships between species richness and abundance with altitude. Between the years 2000 and 2005, we collected 4,765 individuals in 418 samples. One genus of Polychaeta (Aeolosoma) and 36 species of Oligochaeta were identified, distributed in four families: Enchytraeidae (28), Lumbriculidae (4), Naididae (3 and Tubificinae juveniles) and Haplotaxidae (1). Five species were new to Italy: Cernosvitoviella carpatica, Cernosvitoviella cf. crassoductus, Henlea brucei, Henlea glandulifera and Mesenchytraeus sanguineus. As expected, Enchytraeidae prevailed in all sites with the genera Cernosvitoviella and Cognettia the most abundant and frequent. The regression and cluster analyses and the generalized linear mixed models we performed, highlighted that the differences in species richness and abundance among sites are explainable partly by altitude but mainly by habitat type. A clear longitudinal species turnover was evident only in the Noce Bianco and Careser glacier-fed streams, where taxonomic diversity (tested by Seriation analysis) and abundance increased with increasing distance from the glacier front and decreasing altitude. Also expected, the harsh kryal habitat was the poorest in species and individuals, with a dominance of semi-aquatic and terrestrial enchytraeid taxa. Drift was found to be more effective than kick sampling in collecting oligochaetes, especially in glacier-fed streams where the use of the pond net is generally hindered by their high and highly variable discharge. In conclusion, this study provides new data on oligochaete fauna in alpine freshwaters, useful to implement the prevision models for Alpine biodiversity up to date not including annelid fauna.



PlumX Metrics


Download data is not yet available.


Becquet J, Lamouroux, N, Condom T, Gouttevin I, Forcellini M, Launay B, Rabatel A, Cauvy-Fraunie S, 2022. Macroinvertebrate distribution associated with environmental variables in alpine streams. Freshwater Biol. 67:1815-1831. DOI: https://doi.org/10.1111/fwb.13977
Brower JC, Kile KM, 1988. Seriation of an original data matrix as applied to palaeoecology. Lethaia 21:79-93. DOI: https://doi.org/10.1111/j.1502-3931.1988.tb01756.x
Clarke KR, Warwick RM, 1998. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35:523-531. DOI: https://doi.org/10.1046/j.1365-2664.1998.3540523.x
Dózsa-Farkas K, 1973. Some preliminary data on the frost tolerance of Enchytraeidae. Opusc. Zool. Budapest 11:95-97.
Dózsa-Farkas K, 1990. New enchytraeid species from sphagnum-bogs in Hungary (Oligochaeta: Enchytraeidae). Acta Zool. Hung. 36:265-274.
Dózsa-Farkas K, 1999. Taxonomical problems in enchytraeids (Oligochaeta) from Spitsbergen, p. 21-30. In: R.M. Schmelz and K. Sühlo (eds.), Proc. 3rd Internat. Symp. on Enchytraeidae. Universitatsverlag Rasch, Osnabrück, Newsletter on Enchytraeidae 6.
Dózsa-Farkas K, Csitari B, Felföldi T, 2017. A new Cernosvitoviella species (Clitellata: Enchytraeidae) and its comparison with other Cernosvitoviella species from Sphagnum mires in Hungary. Zootaxa 4254 322-338. DOI: https://doi.org/10.11646/zootaxa.4254.3.2
Dumnicka E, 1994. Communities of oligochaetes in mountain streams of Poland. Hydrobiologia 278:107-110. DOI: https://doi.org/10.1007/978-94-011-0842-3_12
Dumnicka E, 2004. A description of Cernosvitoviella tridentina, a new species of Enchytraeidae (Oligochaeta) from the Italian Alps. Ann. Limnol. - Int. J. Lim. 40:133-137. DOI: https://doi.org/10.1051/limn/2004011
Dumnicka E, 2010. Two new freshwater enchytraeid species (Oligochaeta) from the Italian Alps. Ital. J. Zool. 77:38-43. DOI: https://doi.org/10.1080/11250000902855505
Dumnicka E, Boggero A, 2007. Ecological aspects of freshwater Oligochaeta distribution in two mountain ranges in Europe: Tatra Mountains (Poland) and Alps (Italy). Fundam. Appl. Limnol. Arch. Hydrobiol. 168:231-242. DOI: https://doi.org/10.1127/1863-9135/2007/0168-0231
Dumnicka E, Boggero A, 2017. Cernosvitoviella Species (Oligochaeta, Enchytraeidae) from Alpine freshwaters. J. Zool. Sci. 5:25-34.
Dumnicka E, Steingruber S, Colombo L, Zaupa S, Boggero A, 2015. Oligochaete assemblages of Swiss Alpine lakes. Ital. J. Zool. 82:112-123. DOI: https://doi.org/10.1080/11250003.2014.965230
Envall I, Gustavsson LM, Erséus Ch, 2012. Genetic and chaetal variation in Nais worms (Annelida, Clitellata, Naididae). Zool. J. Linnean Soc. 165:495-520. DOI: https://doi.org/10.1111/j.1096-3642.2012.00828.x
IBM Corp., 2016. IBM SPSS Statistics for Windows, Version 26. IBM Corp., Armonk.
Erséus C, Rota E, Timm T, Grimm R, Healy B, Lundberg S, 2005. Riverine and riparian clitellates of three drainages in southern Sweden. Ann. Limnol. - Int. J. Limn. 41:183-194. DOI: https://doi.org/10.1051/limn:20054130183
Gobbi M, Lencioni V, 2020. Glacial biodiversity: lessons from ground-dwelling and aquatic insects, p. 1-23. In: M. Kanao, N. Dematteis, D. Godone (eds.), Glaciers and Polar Environment. IntechOpen, Rijeka. DOI: https://doi.org/10.5772/intechopen.92826
Gotelli NJ, Ellison AM, 2004. A primer of ecological statistics. Sunderland: Sinauer Associates; 492 pp.
Glasby CJ, Erséus C, Martin P, 2021. Annelids in Extreme aquatic environments: diversity, adaptations and evolution. Diversity 13:98. DOI: https://doi.org/10.3390/d13020098
Hammer Ø, Harper DAT, Ryan PD, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:1-9.
Heino J, 2008. Patterns of functional biodiversity and function environment relationships in lake littoral macroinvertebrates. Limnol. Oceanogr. 53:1446-1455. DOI: https://doi.org/10.4319/lo.2008.53.4.1446
Klein B, Tockner K, 2000. Biodiversity in springbrooks of a glacial flood plain (Val Roseg, Switzerland). Verh. Internat. Verein. Limnol. 27:704-710. DOI: https://doi.org/10.1080/03680770.1998.11901325
Lafont M, Malard F, 2001. Oligochaete communities in the hyporheic zone of a glacial river, the Roseg River, Switzerland. Hydrobiologia 463:75-81. DOI: https://doi.org/10.1007/978-94-010-0597-5_8
Lencioni V, Maiolini B, Zuccati S, Corradini F, 2002. Zoobenthos drift in two high mountain streams in the de la Mare glacial system (Stelvio National Park, Trentino, Italy). Studi Trent. Sci. Nat. Acta Biol. 81:167-176.
Lencioni V, 2004. Survival strategies of freshwater insects in cold environments. J. Limnol. 63:45-55. DOI: https://doi.org/10.4081/jlimnol.2004.s1.45
Lencioni V, Dumnicka E, Maiolini B, 2004. The oligochaete fauna in high mountain streams (Trentino, NE Italy): ecological and taxonomical remarks. Studi Trent. Sci. Nat. Acta Biol. 81:167-176.
Lencioni V, Rossaro B, Maiolini B, 2007. Alpine chironomid distribution: a mere question of altitude? p. 165-180. In: T. Andersen (ed.), Contributions to the systematics and ecology of aquatic Diptera - A Tribute to Ole A. Sæther. Columbus: The Caddis Press.
Lencioni V, Spitale D, 2015. Diversity and distribution of benthic and hyporheic fauna in different stream types on an alpine glacial floodplain. Hydrobiologia 751: 73-87. DOI: https://doi.org/10.1007/s10750-014-2172-2
Lencioni V, 2018. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps. Sci. Tot. Env. 622-623: 563-575. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.266
Lencioni V, Gobbi M, 2018. Do carabids (Coleoptera: Carabidae) and chironomids (Diptera: Chironomidae) exhibit similar diversity and distributional patterns along a spatio-temporal gradient on a glacier foreland? J. Limnol. 77:1794.
Liiv I, 2010. Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. 3:70-91. DOI: https://doi.org/10.1002/sam.10071
Lods-Crozet B, Castella E, Cambin D, Ilg C, Knispel S, Mayor-Simeant H, 2001. Macroinvertebrate community structure in relation to environmental variables in a Swiss glacial stream. Freshwater Biol. 46:1641-1661. DOI: https://doi.org/10.1046/j.1365-2427.2001.00850.x
Maiolini B, Lencioni V, 2001. Longitudinal distribution of macroinvertebrate assemblages in a glacially influenced stream system in the Italian Alps. Freshwater Biol. 46:1625-1639. DOI: https://doi.org/10.1046/j.1365-2427.2001.00849.x
Maiolini B, Lencioni V, Boggero A, Thaler B, Lotter A, Rossaro B, 2006. Zoobenthic communities of inlets and outlets of high altitude Alpine lakes. Hydrobiologia 562:217-229. DOI: https://doi.org/10.1007/s10750-005-1812-y
Malard F, Lafont M, Burgherr P, Ward JV, 2001. A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial river. Arct. Antarct. Alp. Res. 33:457-466. DOI: https://doi.org/10.1080/15230430.2001.12003455
Martin P, Martinez-Ansemil E, Pinder A, Timm T, Wetzel MJ, 2007. Global diversity of oligochaetous clitellates (“Oligochaeta”; Clitellata) in freshwater, p. 117-127. In: E.V. Balian, C. Lévêque, H. Segers, K. Martens, (eds.), Freshwater animal diversity assessment. Developments in Hydrobiology, vol 198. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-1-4020-8259-7_14
Milner AM, Brittain JE, Castella E, Petts GE, 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biol. 46:1833-1847. DOI: https://doi.org/10.1046/j.1365-2427.2001.00861.x
Nurminen M, 1973. Enchytraeidae (Oligochaeta) of Iceland. Ann. Zool. Fennici 10:412-413.
Nurminen M, 1977. Enchytraeidae (Oligochaeta) from the Grossglockner region of the Austrian Alps. Ann. Zool. Fennici 14:224-227.
Oertli B, Indermuehle N, Angélibert S, Hinden H, Stoll A, 2008. Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables. Hydrobiologia 597:29-41. DOI: https://doi.org/10.1007/s10750-007-9218-7
Paschetta M, Giachino P, Isaia M, 2013. Taxonomic relatedness of spider and carabid assemblages in a wetland ecosystem. Zool. Stud. 51:1175-1187
Robinson CT, Tockner K, Burgherr P, 2002. Seasonal patterns in macroinvertebrate drift and seston transport in streams of an alpine glacial flood plain. Freshwater Biol. 47: 985-993. DOI: https://doi.org/10.1046/j.1365-2427.2002.00835.x
Rota E, 1994. Enchytraeidae (Oligochaeta) of western Anatolia: taxonomy and faunistics. Boll. Zool. 61:241-260. DOI: https://doi.org/10.1080/11250009409355892
Rota E, 1995. Italian Enchytraeidae (Oligochaeta). I. Boll. Zool. 62:183-231. DOI: https://doi.org/10.1080/11250009509356067
Rota E, 2013. How many lookalikes has Marionina argentea (Michaelsen, 1889) (Annelida: Clitellata: Enchytraeidae)? Three new species described from morphological evidence. Zool. Anz. J. Compar. Zool. 252:123-137. DOI: https://doi.org/10.1016/j.jcz.2012.05.001
Rota E, 2015. Five new species of Enchytraeidae (Annelida: Clitellata) from Mediterranean woodlands of Italy and reaffirmed validity of Achaeta etrusca, Fridericia bulbosa and F. miraflores. J. Nat. Hist. 49:1987-2020. DOI: https://doi.org/10.1080/00222933.2015.1009514
Rota E, Caruso T, Bargagli R, 2014. Community structure, diversity and spatial organization of enchytraeids in Mediterranean urban holm oak stands. Eur. J. Soil Biol. 62 83-91. DOI: https://doi.org/10.1016/j.ejsobi.2014.02.016
Sambugar B, Martinez-Ansemil E, Giani N, 2005. Oligochaetes from springs in southern Europe. Boll. Mus. Civ. Storia Nat. Verona Botanica-Zoologia 29:93-106.
Sambugar B, Dessi G, Sapelza A, Stenico A, Thaler B, Veneri A, 2006. [Fauna sorgentizia in Alto Adige].[Book in Italian]. Bolzano: Provincia Autonoma di Bolzano-Alto Adige; 372 pp.
Schmelz RM, Collado R, 2010. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Org. 82:1-176.
Sneath PH, Sokal RR, 1973. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: W. H. Freeman; 588 pp.
Sømme L, Birkemoe T, 1997. Cold tolerance and dehydration in Enchytraeidae from Svalbard. J. Comp. Physiol. B 167:264-269. DOI: https://doi.org/10.1007/s003600050073
Stoch F, Gerecke R, Pieri V, Rossetti G, Sambugar B, 2011. Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. J. Limnol. 70:65. DOI: https://doi.org/10.4081/jlimnol.2011.s1.65
Thaler B, Tait D, Tolotti M, 2015.[Permafrost und seine Auswirkungen auf die Ökologie von Hochgebirgsseen].[Article in German]. Geo. Alp. 12:183-234.
Timm T, 1980. Distribution of aquatic oligochaetes, p. 55-57. In: R.O. Brinkhurst and D.G. Cook (eds.), Aquatic oligochaete biology. New York: Plenum Press. DOI: https://doi.org/10.1007/978-1-4613-3048-6_6
Timm T, 1996. Enchytraeids (Oligochaeta, Enchytraeidae) as lake-dwellers. Newslett. Enchytraeidae 5:47-55.
Timm T, 2007. Estonian Enchytraeidae. 3. Freshwater Enchytraeidae. Folia Fac. Scie. Nat. Univ. Masarykianae Brunensis Biologia 110:87-92.
Timm T, 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66:1-235.
Timm T, Giani N, 2013. Fauna Europaea: Naididae. Fauna Europaea version 2017.06. Accessed: 2023-05-15. Available from: https://fauna-eu.org
Wilkes MA, Carrivick JL, Castella E, Ilg C, Cauvy-Fraunié S, Fell S, et al., 2023. Glacier retreat reorganises river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7:841-851. DOI: https://doi.org/10.1038/s41559-023-02061-5
WoRMS Editorial Board, 2023. World Register of Marine Species. Accessed: 2022-12-10. Available from: https://www.marinespecies.org/imis.php?dasid=1447&doiid=170

Edited by

Francesca Bona, Department of Life Sciences and Systems Biology, University of Turin, Italy

How to Cite

Dumnicka, Elzbieta, Kamil Najberek, and Valeria Lencioni. 2023. “Oligochaete Distribution in Alpine Freshwaters: Not a Mere Question of Altitude”. Journal of Limnology 82 (1). https://doi.org/10.4081/jlimnol.2023.2148.