The effects of microplastics size and type on entrapment by freshwater macrophytes under vertical and lateral deposition

Submitted: 14 February 2025
Accepted: 10 March 2025
Published: 9 April 2025
Abstract Views: 297
PDF: 81
Supplementary: 27
HTML: 8
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Marine and freshwater macrophytes are known to filter off microplastics from the water column; however, the effects of microplastic size and type on their retention by different macrophytes species have yet to be investigated. Here we tested the retention of different sizes and types of microplastics, introduced under two flow regimes (vertical deposition in still water and lateral deposition in a unidirectional current), by two submerged macrophyte species, Hydrilla verticillata and Mayaca fluviatilis, using ex situ experiments. Microplastics entrapment efficiency in macrophytes was determined by calibrating the dry weight (DW) of the plant and analysing the characteristics of each macrophyte species via a comparison of their leaf outer-edge perimeter-to-area ratio (P:A). The entrapment efficiency of macrophytes was higher in still water than in moving water. Hydrilla verticillata had greater average leaf surface area and retained the most polyethylene terephthalate (PET) of size 800-1000 μm under both lateral deposition in moving water (1.75±0.11 g) and vertical deposition in still water (2.85±0.24 g). Conversely, M. fluviatilis had greater P:A, surface area, and high surface cellulose and retained the most PET of size 600-800 μm in both moving (0.73±0.07 g) and still (0.92±0.159 g) water. Our findings highlight the influence of microplastic size and material type, macrophyte morphology and surface area, and water flow conditions in determining the entrapment rate of microplastics by macrophytes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ashton K, Holmes L, Turner A, 2010. Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050-2055. DOI: https://doi.org/10.1016/j.marpolbul.2010.07.014
Bakir A, Rowland SJ, Thompson RC, 2014. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf S 140:14-21. DOI: https://doi.org/10.1016/j.ecss.2014.01.004
Berger CJ, Wells SA, 2008. Modeling the effects of macrophytes on hydrodynamics. J Environ Engin 134:778-788. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2008)134:9(778)
Bhattacharya P, Lin S, Turner JP, Ke PC, 2010. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556-16561. DOI: https://doi.org/10.1021/jp1054759
Browne MA, 2015. Sources and pathways of microplastics to habitats, pp 229-244. In: M. Bergmann, L. Gutow, and M. Klages (eds.), Marine anthropogenic litter. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-16510-3_9
Canfield DE, Hoyer MV, 1992. Aquatic macrophytes and their relation to the limnology of Florida Lakes. Available from: https://lakewatch.ifas.ufl.edu/media/lakewatchifasufledu/research/historical-reports/Canfield-and-Hoyer-1992-(Part-1-of-4).pdf
Canniff PM, Hoang TC, 2018. Microplastic ingestion by Daphnia Magna and its enhancement on algal growth. Sci Total Environ 633:500-507. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.176
Ceschin S, Mariani F, Di Lernia D, Venditti I, Pelella E, Iannelli MA, 2023. Effects of microplastic contamination on the aquatic plant Lemna minuta (least duckweed). Plants (Basel) 12:207. DOI: https://doi.org/10.3390/plants12010207
Chadwell TB, Engelhardt KAM, 2008. Effects of Pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. J Appl Ecol 45:515-523. DOI: https://doi.org/10.1111/j.1365-2664.2007.01384.x
Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS, 2013. Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646-6655. DOI: https://doi.org/10.1021/es400663f
Cook CDK, Lüönd R, 1982. A revision of the genus Nechamandra (Hydrocharitaceae). Aquat Bot 13:505-513. DOI: https://doi.org/10.1016/0304-3770(82)90075-4
Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, et al., 2014. Plastic debris in the open ocean. P Natl Acad Sci USA 111:10239-10244. DOI: https://doi.org/10.1073/pnas.1314705111
Egea LG, Cavijoli-Bosch J, Casal-Porras I, Yamuza-Magdaleno A, Brun FG, Jiménez-Ramos R, 2023. Comparison of macroplastics dynamic across a tidal-dominated coastal habitat seascape including seagrasses, salt marshes, rocky bottoms and soft sediments. Mar Pollut Bull 196:115590. DOI: https://doi.org/10.1016/j.marpolbul.2023.115590
Espinosa A, Di Corato R, Jeena Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C, 2016. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436-2446. DOI: https://doi.org/10.1021/acsnano.5b07249
Esterhuizen M, Kim YJ, 2022. Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (lotus) in water and sediment. Environ Sci Pollut Res 29:17580-17590. DOI: https://doi.org/10.1007/s11356-021-17033-0
Feng Z, Zhang T, Shi H, Gao K, Huang W, Xu J, et al., 2020. Microplastics in bloom-forming macroalgae: distribution, characteristics and impacts. J Hazard Mater 397:122752. DOI: https://doi.org/10.1016/j.jhazmat.2020.122752
Frantz CM, Petryshyn VA, Corsetti FA, 2015. Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13:409-423. DOI: https://doi.org/10.1111/gbi.12145
Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B, 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85:156-163. DOI: https://doi.org/10.1016/j.marpolbul.2014.06.001
Gacia E, Granata TC, Duarte CM, 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65:255-268. DOI: https://doi.org/10.1016/S0304-3770(99)00044-3
Gallitelli L, Di Lollo G, Adduce C, Maggi MR, Trombetta B, Scalici M, 2023. Aquatic plants entrap different size of plastics in indoor flume experiments. Sci Total Environ 863:161051. DOI: https://doi.org/10.1016/j.scitotenv.2022.161051
Goss H, Jaskiel J, Rotjan R, 2018. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Mar Pollut Bull 135:1085-1089. DOI: https://doi.org/10.1016/j.marpolbul.2018.08.024
Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M, 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060-3075. DOI: https://doi.org/10.1021/es2031505
Horton AA, Walton A, Spurgeon DJ, Lahive E, SvendsenC, 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127-141. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.190
Huang J, Li R, Ma YX, Cao C, Li X, Han TW, Cao MF, 2023. Effects of macrophytes on micro- and nanoplastic retention and cycling in constructed wetlands. Environ Pollut 326:121259. DOI: https://doi.org/10.1016/j.envpol.2023.121259
Issac MN, Kandasubramanian B, 2021. Effect of microplastics in water and aquatic systems. Environl Sci Pollut Res 28:19544-19562. DOI: https://doi.org/10.1007/s11356-021-13184-2
Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, et al., 2007. Restoration of shallow lakes by nutrient control and biomanipulation - the successful strategy varies with lake size and climate. Hydrobiologia 581:269-285. DOI: https://doi.org/10.1007/s10750-006-0507-3
Kaiser D, Estelmann A, Kowalski N, Glockzin M, Waniek JJ, 2019. Sinking velocity of sub-millimeter microplastic. Mar Pollut Bull 139:214-220. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.035
Kalčíková G, 2020. Aquatic vascular plants – a forgotten piece of nature in microplastic research. Environ Pollut 262:114354. DOI: https://doi.org/10.1016/j.envpol.2020.114354
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. 2019. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410-422. DOI: https://doi.org/10.1016/j.watres.2019.02.054
Kohler A, Schneider S, 2003. Macrophytes as bioindicators. Large Rivers 14:17-31. DOI: https://doi.org/10.1127/lr/14/2003/17
Kong X, Koelmans AA, 2019. Modeling decreased resilience of shallow lake ecosystems toward eutrophication due to microplastic ingestion across the food web. Environ Sci Technol 53:13822-13831. DOI: https://doi.org/10.1021/acs.est.9b03905
Kowalski N, Reichardt AM, Waniek JJ, 2016. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar Pollut Bull 109:310-319. DOI: https://doi.org/10.1016/j.marpolbul.2016.05.064
Langeland KA, 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), "the perfect aquatic weed". Castanea 61:293-304.
Law KL, Thompson RC, 2014. Microplastics in the seas. Science 345:144-145. DOI: https://doi.org/10.1126/science.1254065
Le Bouteiller C, Venditti JG. 2015. Sediment transport and shear stress partitioning in a vegetated flow. Water Resour Res 51:2901-2922. DOI: https://doi.org/10.1002/2014WR015825
Lenaker PL, Baldwin AK, Corsi SR, Mason SA, Reneau PC, Scott JW, 2019. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River Basin to Lake Michigan. Environ Sci Technol 53:12227-12237. DOI: https://doi.org/10.1021/acs.est.9b03850
Lenz R, Enders K, Nielsen TG, 2016. Microplastic exposure studies should be environmentally realistic. P Natl Acad Sci USA 113:E4121–E4122. DOI: https://doi.org/10.1073/pnas.1606615113
Levi PS, Riis T, Alnøe AB, Peipoch M, Maetzke K, Bruus C, Baattrup-Pedersen A, 2015. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18:914-931. DOI: https://doi.org/10.1007/s10021-015-9872-y
Li C, Busquets R, Campos LC, 2020. Assessment of microplastics in freshwater systems: a review. Sci Total Environ 707:135578. DOI: https://doi.org/10.1016/j.scitotenv.2019.135578
Lin L, Pan X, Zhang S, Li D, Zhai W, Wang Z, et al., 2021. Distribution and source of microplastics in China’s second largest reservoir - Danjiangkou Reservoir. J Environ Sci 102:74-84. DOI: https://doi.org/10.1016/j.jes.2020.09.018
Little A, Schwerdt JG, Shirley NJ, Khor SF, Neumann K, O’Donovan LA, et al., 2018. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol 177:1124-1241. DOI: https://doi.org/10.1104/pp.17.01718
Liu R, Wang Y, Yang Y, Shen L, Zhang B, Dong Z, et al., 2023. New insights into adsorption mechanism of pristine and weathered polyamide microplastics towards hydrophilic organic compounds. Environ Pollut 317:120818. DOI: https://doi.org/10.1016/j.envpol.2022.120818
Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, van Pelt FNAM, O’Halloran J, Jansen MAK, 2019. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci Total Environ 689:413-421. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.359
Murphy F, Russell M, Ewins C, Quinn B, 2017. The uptake of macroplastic & microplastic by demersal & pelagic fish in the Northeast Atlantic around Scotland. Mar Pollut Bull 122:353-359. DOI: https://doi.org/10.1016/j.marpolbul.2017.06.073
Murphy KJ, 1988. Aquatic weed problems and their management: a review I. The worldwide scale of the aquatic weed problem. Crop Prot 7:232-248. DOI: https://doi.org/10.1016/0261-2194(88)90044-0
Nel HA, Dalu T, Wasserman RJ, 2018. Sinks and sources: assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci Total Environ 612:950-956. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.298
Ng KL, Suk KF, Cheung KW, Tsung Shek RH, Ngai Chan SM, Yee Tam NF, et al., 2022. Macroalgal morphology mediates microplastic accumulation on thallus and in sediments. Sci Total Environ 825:153987. DOI: https://doi.org/10.1016/j.scitotenv.2022.153987
Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG, 2016. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci-Proc Imp 18:1050-1059. DOI: https://doi.org/10.1039/C6EM00206D
Peller J, Nevers MB, Byappanahall M, Nelson C, Babu BG, Evans MA, et al., 2021. Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes. Environ Pollut 276:116695. DOI: https://doi.org/10.1016/j.envpol.2021.116695
Qiu Q, Peng J, Yu X, Chen F, Wang J, Dong F, 2015. Occurrence of microplastics in the coastal marine environment: first observation on sediment of China. Mar Pollut Bull 98:274-280. DOI: https://doi.org/10.1016/j.marpolbul.2015.07.028
R-project, 2016. Effsize - a Package for Efficient Effect Size Computation. Available from: https://cran.r-project.org/web/packages/effsize/effsize.pdf
Rebelein A, Int-Veen I, Kammann U, Scharsack JP. 2021. Microplastic fibers - underestimated threat to aquatic organisms? Sci Total Environ 777:146045. DOI: https://doi.org/10.1016/j.scitotenv.2021.146045
Redondo-Hasselerharm PE, Falahudin D, Peeters ETHM, Koelmans AA, 2018. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ Sci Technol 52:2278-2286. DOI: https://doi.org/10.1021/acs.est.7b05367
Rodrigues JP, DuarteAC, Santos-Echeandía J, Rocha-Santos T, 2019. Significance of interactions between microplastics and POPs in the marine environment: a critical overview. TRAC-Trend Anal Chem111:252-260. DOI: https://doi.org/10.1016/j.trac.2018.11.038
Rolland DC, Haury J, Marmonier P, Lagadeuc Y, 2015. Effect of macrophytes on flow conditions and deposition of suspended particles in small streams: an experimental study using artificial vegetation. Rev Scie Eau 28:231-245. DOI: https://doi.org/10.7202/1034012ar
Rozman U, Blazic A, Kalcíková G, 2023. Phytoremediation: a promising approach to remove microplastics from the aquatic environment. Environ Pollut 338:122690. DOI: https://doi.org/10.1016/j.envpol.2023.122690
Rozman U, Klun B, Kalcíková G, 2023. Distribution and removal of microplastics in a horizontal sub-surface flow laboratory constructed wetland and their effects on the treatment efficiency. Chem Eng J 461:142076. DOI: https://doi.org/10.1016/j.cej.2023.142076
Saley AM, Smart AC, Bezerra MF, Burnham TLU, Capece LR, Lima LFO, et al., 2019. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar Pollut Bull 146:54-59. DOI: https://doi.org/10.1016/j.marpolbul.2019.05.065
Sarijan S, Azman S, Mohd Said MI, Jamal MH, 2021. Microplastics in freshwater ecosystems: a recent review of occurrence, analysis, potential impacts, and research needs. Environ Sci Pollut Res 28:1341-1356. DOI: https://doi.org/10.1007/s11356-020-11171-7
Schulz M, Kozerski H-P, Pluntke T, Rinke K, 2003. The Influence of macrophytes on sedimentation and nutrient retention in the lower river Spree (Germany). Water Res 37:569-578. DOI: https://doi.org/10.1016/S0043-1354(02)00276-2
Setälä O, Fleming-Lehtinen V, Lehtiniemi M, 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77-83. DOI: https://doi.org/10.1016/j.envpol.2013.10.013
Sim DZH, Mowe MAD, Chong KY, Yeo DCJ, 2022. An overview and checklist of non-native and cryptogenic vascular macrophytes in Singapore’s fresh waters. Nature Singapore Supplement 1:e2022120.
Singh B, Sharma N, 2008. Mechanistic implications of plastic degradation. Polym Degrad Stabil 93:561-584. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.11.008
Su F, Guo Y-N, Zhou X-X, Wang R-J, 2020. Mayacaceae, a newly naturalized family for the flora of China. Phytotaxa 447:77-80. DOI: https://doi.org/10.11646/phytotaxa.447.1.9
Suteja Y, Sunaryo Purwiyanto AI. 2022. The role of rivers in microplastics spread and pollution, pp. 65-88. In: M. Sillanpää, A. Khadir and S. S. Muthu (eds.), Microplastics pollution in aquatic media, environmental footprints and eco-design of products and processes. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-8440-1_4
Teuten EL, RowlandSJ, Galloway TS, Thompson RC, 2007. Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759-7764. DOI: https://doi.org/10.1021/es071737s
Textile Exchange [Internet], 2022. Climate+ Guides the fashion, textile, and apparel industry towards a shared goal. Available from: https://textileexchange.org/climate-vision/
Thompson PA, Bonham PI, Swadling KM, 2008. Phytoplankton blooms in the Huon Estuary, Tasmania: top-down or bottom-up control? J Plankton Res 30:735-753. DOI: https://doi.org/10.1093/plankt/fbn044
Turra A, Manzano AB, Dias RJS, Mahiques MM, Barbosa L, Balthazar-Silva D, Moreira FT, 2014. Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Sci Rep 4:4435. DOI: https://doi.org/10.1038/srep04435
Uzun P, Farazande S, Guven B, 2022. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: a review. Chemosphere 288:132517. DOI: https://doi.org/10.1016/j.chemosphere.2021.132517
Waldschläger K, Schüttrumpf H, 2019. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ Sci Technol 53:1958-1966. DOI: https://doi.org/10.1021/acs.est.8b06794
Wang F, Wu H, Wu W, Wang L, Liu J, An L, Xu Q, 2021. Microplastic characteristics in organisms of different trophic levels from Liaohe Estuary, China. Sci Total Environ 789:148027. DOI: https://doi.org/10.1016/j.scitotenv.2021.148027
Wang L, Gao Y, Jiang W, Chen J, Chen Y, Zhang X, Wang G, 2021. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere 266:128979. DOI: https://doi.org/10.1016/j.chemosphere.2020.128979
Wang Q, Meng LZ, Liu WT, Zeb A, Shi RY, Lian YH, Su C, 2023. Single and combined effects of polystyrene nanoplastics and Cd on submerged plants Ceratophyllum demersum L. Sci Total Environ 872:162291. DOI: https://doi.org/10.1016/j.scitotenv.2023.162291
Wang Z, Dou M, Ren P, Sun B, Jia R, Zhou Y, 2021. Settling velocity of irregularly shaped microplastics under steady and dynamic flow conditions. Environ Sci Pollut Res 28:62116-62132. DOI: https://doi.org/10.1007/s11356-021-14654-3
Warman L, Moles AT, Edwards W, 2011. Not so Simple after all: searching for ecological advantages of compound leaves. Oikos 120:813-821. DOI: https://doi.org/10.1111/j.1600-0706.2010.19344.x
Wright SL, Thompson RC, Galloway TS, 2013. The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483-492. DOI: https://doi.org/10.1016/j.envpol.2013.02.031
Yakandawala K, Dissanayake DMGS, 2010. Mayaca fluviatilis Aubl.: an ornamental aquatic with invasive potential in Sri Lanka. Hydrobiologia 656:199-204. DOI: https://doi.org/10.1007/s10750-010-0429-y
Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM, 2020. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol 104:6501-6511. DOI: https://doi.org/10.1007/s00253-020-10704-x
Yu H, Qi W, Cao X, Wang Y, Li Y, Xu Y, et al., 2022. Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Environ Pollut 292:118220. DOI: https://doi.org/10.1016/j.envpol.2021.118220

Edited by

Michela Rogora, CNR-IRSA Water Research Institute, Verbania-Pallanza, Italy

How to Cite

Wu, Minli, Yi Le Goh, Maxine A. D. Mowe, Peter A. Todd, and Darren C.J. Yeo. 2025. “The Effects of Microplastics Size and Type on Entrapment by Freshwater Macrophytes under Vertical and Lateral Deposition”. Journal of Limnology 84 (April). https://doi.org/10.4081/jlimnol.2025.2218.