Physical and chemical characteristics of 1300 lakes and ponds across the Canadian Arctic

Characteristics of Canadian Arctic lakes and ponds

Submitted: 16 June 2020
Accepted: 25 August 2020
Published: 2 September 2020
Abstract Views: 996
PDF: 414
Supplementary: 102
HTML: 223
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lakes and ponds are a major feature of the Arctic landscape and are recognized as effective ‘sentinels of change’. Here we present water chemistry characteristics of lakes and ponds (n=1300 with 26 variables) across the Canadian Arctic collated from published studies. We also extracted geological and ecoregion data in an attempt to determine the key drivers. In general, most lakes were shallow (85.4%, <10 m), nutrient (phosphorus) poor (oligotrophic = 45.6% and ultra-oligotrophic = 24.8%), located at low elevation (66.5%, <200 m asl), close to coastlines (72.5%, 0-50 km), and underlain by sedimentary geology (66.5%). The first two components from Principal Component Analysis explained 49.3% of the variation in the dataset; the first component was dominated by conductivity/carbonate materials, and the second component suggested allochthonous inputs of phosphorus. In general, bedrock geology is the primary driver of water chemistry; as such, there were major differences between lakes underlain by igneous and sedimentary rocks. Those on sedimentary bedrock tend to have higher pH, nutrients and higher inorganic ion concentrations.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adams HE, Crump BC, Kling GW, 2010. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environ. Microbiol. 12;1319-1333. DOI: https://doi.org/10.1111/j.1462-2920.2010.02176.x
Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeye, GA, Winder M, 2009. Lakes as sentinels of climate change. Limnol. Oceanogr. 54:2283–2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Alexander V, Whalen SC, Klingensmith KM, 1989. Nitrogen cycling in Arctic lakes and ponds, p. 165-172. In: V. Warwick and J.C. Ellis-Evans (eds.), High Latitude Limnology. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-2603-5_12
Aliabadi AA, Staebler RM, Sharma S, 2015. Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution. Atmos. Chem. Phys. 15:2651-2673. DOI: https://doi.org/10.5194/acp-15-2651-2015
Alisauskas RT, Charlwood J, Kellett DK, 2006. Vegetation correlates of nesting history and density by Ross’s and lesser snow geese at Karrak Lake, Nunavut. Arctic 59:201–210. DOI: https://doi.org/10.14430/arctic342
Amon RMW, Rinehart AJ, Duan S, Louchouarn P, Prokushkin A, Guggenberger G, Bauch D, Stedmon C, Raymond PA, Holmes RM, McClelland JW, 2012. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 94:217-237. DOI: https://doi.org/10.1016/j.gca.2012.07.015
Antoniades D, Douglas MSV, Smol JP, 2003a. Comparative physical and chemical limnology of two Canadian High Arctic regions: Alert Ellesmere Is., NU and Mould Bay Prince Patrick Is., NWT. Archiv Hydrobiol 158:485–516. DOI: https://doi.org/10.1127/0003-9136/2003/0158-0485
Antoniades D, Douglas MSV, Smol JP, 2003b. The physical and chemical limnology of 24 ponds and one lake from Isachsen, Ellef Ringnes Is., Canadian High Arctic. Int. Rev. Hydrobiol. 88:519–538. DOI: https://doi.org/10.1002/iroh.200310665
Arctic Monitoring and Assessment Programme, 1998. AMAP Assessment Report: Arctic Pollution issues. Arctic Monitoring and Assessment Programme AMAP. Available from: https://www.amap.no/documents/doc/amap-assessment-report-arctic-pollution-issues/68
Arctic Monitoring and Assessment Programme, 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme AMAP. Available from: https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610
Babaluk JA, Gantner N, Michaud W, Muir DCG, Power N, Reist JD, Sinnatamby R, Wang X, 2009. Chemical analyses of water from lakes and streams in Quttinirpaaq National Park, Nunavut, 2001-2008. Canadian Data Report of Fisheries and Aquatic Sciences, Winnipeg; 1217 pp.
Babaluk JA, Heuring LG, Reist JD, Billeck BN, 1999. Selected chemical analyses of water from lakes in Ellesmere Is. National Park Reserve, Northwest Territories. Canadian Data Report of Fisheries and Aquatic Sciences, Winnipeg; 1250 pp.
Bazely DR, Jefferies RL, 1985. Goose Faeces: A source of nitrogen for plant growth in a grazed salt marsh. J. Appl. Ecol. 22:693-703. DOI: https://doi.org/10.2307/2403222
Bégin PN, Lebedeva L, Tashyreva D, Velazquez D, Blaen PJ, 2017. Future priorities for Arctic freshwater science from the perspective of early-career researchers. Arctic Sci. 3:661-671. DOI: https://doi.org/10.1139/AS-2016-0028
Bouchard G, Gajewski K, Hamilton PB, 2004. Freshwater diatom biogeography in the Canadian Arctic Archipelago. J. Biogeogr. 31:1955–1973. DOI: https://doi.org/10.1111/j.1365-2699.2004.01143.x
Brimble SK, Blais JM, Kimpe LE, Mallory ML, Keatley BE, Dougla, MSV, Smol JP, 2009. Bioenrichment of trace elements in a series of ponds near a northern fulmar Fulmarus glacialis colony at Cape Vera, Devon Island. Can. J. Fish. Aquat. Sci. 66: 949–958. DOI: https://doi.org/10.1139/F09-053
Bunbury J, Gajewski K, 2005. Quantitative analysis of freshwater ostracode assemblages in southwestern Yukon Territory, Canada. Hydrobiologia 545:117–128. DOI: https://doi.org/10.1007/s10750-005-2746-0
Bunbury J, Gajewski K 2009. Biogeography of freshwater ostracodes in the Canadian arctic archipelago. Arctic 62:324–332. DOI: https://doi.org/10.14430/arctic153
Canchola JA, Tang S, Hemyari P, Paxinos E, Marins E, 2017. Correct use of percent coefficient of variation (cv) formula for log-transformed data. MOJ Proteomics Bioinform 6:316-7. DOI: https://doi.org/10.15406/mojpb.2017.06.00200
CCME-Canadian Council of Ministers of the Environment, 2004. Canadian water quality guidelines for the protection of aquatic life. Phosphorus: Canadian Guidance Framework for the Management of Freshwater Systems. Canadian Council of Ministers of the Environment, Winnipeg. Available from: http://ceqg-rcqe.ccme.ca/download/en/205
CEC-Commission for Environmental Cooperation, Montréal, Québec, and Secretariat, 1997. Ecological regions of North America: toward a common perspective. Commission for Environmental Cooperation. Available from: http://www3.cec.org/islandora/en/item/1701-ecological-regions-north-america-toward-common-perspective
Cerling TE, Pederson BL, Von Damm KL 1989. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology 17:552–554. DOI: https://doi.org/10.1130/0091-7613(1989)017<0552:SCIEIT>2.3.CO;2
Clague JJ, Mathews WH, Ryder JM, Hughes OL, Rutter NW, Jackson Jr. LE, Matthews Jr. JW, MacDonald GM, 1989. Quaternary Geology of the Canadian Cordillera, p. 40-42. In: R.J. Fulton (ed.), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Geology of Canada Series. 1–839. Canadian Government Publishing Centre. Ottawa, Canada.
Corbett JJ, Lack DA, Winebrake JJ, Harder S, Silberman JA, Gold M. 2010. Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys. 10:9689–9704. DOI: https://doi.org/10.5194/acp-10-9689-2010
Côté G, Pienitz R, Velle G, Wang X, 2010. Impact of geese on the limnology of lakes and ponds from Bylot Is. Nunavut, Canada. Int. Rev. Hydrobiol. 95:105–129. DOI: https://doi.org/10.1002/iroh.200911151
Dawes PR, Christie RL, 1991. Geomorphic regions, p. 29-56. In: H.P. Trettin (ed.), Geology of the Innuitian orogen and Arctic platform of Canada and Greenland. Geology of Canada Ottawa, Canada.
Dawson J, Winebrake DA, Harder JJ, Silberman S, Gold M, 2017. Shipping trends in Nunavut from 1990-2015. A report prepared for the Nunavut General Monitoring Program. Nunavut General Monitoring Program, Ottawa.
Devlin JE, 2010. Applications of paleolimnology in ecosystem monitoring for Sirmilik National park: Developing indicators of ecological integrity. Ms Thesis, University of Toronto.
Devlin JE, Finkelstein SA, 2011. Local physiographic controls on the responses of Arctic lakes to climate warming in Sirmilik National Park, Nunavut, Canada. J. Paleolimnol. 45:23–39. DOI: https://doi.org/10.1007/s10933-010-9477-6
Dittmar T, Kattner G, 2003. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Marine Chem. 83:103-120. DOI: https://doi.org/10.1016/S0304-4203(03)00105-1
Downing, J.A. and McCauley, E. 1992. The nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 37:936–945. DOI: https://doi.org/10.4319/lo.1992.37.5.0936
Dranga SA, Hayles S, Gajewski K, 2018. Synthesis of limnological data from lakes and ponds across Arctic and Boreal Canada. Arctic Sci. doi:10.1139/as-2017-0039. DOI: https://doi.org/10.1139/as-2017-0039
Dupont J, Clair TA, Gagnon C, Jeffries DS, Kahl JS, Nelson SJ, Peckenham JM, 2005. Estimation of critical loads of acidity for lakes in northeastern United States and eastern Canada. Environ. Monitor. Assess. 109:275-292. DOI: https://doi.org/10.1007/s10661-005-6286-x
Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10:1135-1142. DOI: https://doi.org/10.1111/j.1461-0248.2007.01113.x
Environmental Canada, 1994a. Environmental Canada Manual of Analytical Methods: Major Ions and Nutrients, Vol 1. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington.
Environmental Canada, 1994b. Environmental Canada Manual of Analytical Methods: Trace Metals, Vol 2. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington.
Everett KR, 1980. Distribution and properties of road dust along the northern portion of the Haul Road, p. 101–128. In: J. Brown and R.L. Berg (eds.), Environmental engineering and ecological baseline investigations along the Yukon River-Prudhoe Bay Haul Road. CRREL Report 80-19. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover.
Forsius M, Posch M, Aherne J, Reinds GJ, Christensen J, Hole L, 2010. Assessing the impacts of long-range sulfur and nitrogen deposition on arctic and sub-arctic ecosystems. Ambio 39:136-147. DOI: https://doi.org/10.1007/s13280-010-0022-7
Gong W, Beagley SR, Cousineau S, Sassi M, Munoz-Alpizar R, Ménard S, Racine J, Zhang J, Chen J, Morrison H, Sharma S, 2018. Assessing the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions: Current and future modelled scenarios. Atmos. Chem. Phys.1822:16653-16687. DOI: https://doi.org/10.5194/acp-18-16653-2018
Gould WA, Edlund S, Zoltai S, Raynolds M, Walke, DA, Maier H, 2002. Canadian Arctic vegetation mapping. Int. J. Remote Sensing 23:4597-4609. DOI: https://doi.org/10.1080/01431160110113962
Gould WA, Rayolds M, Walker DA, 2003. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic. J. Geophys. Res. 108:1–14. DOI: https://doi.org/10.1029/2001JD000948
Gunter RA, 2017. The impact of road dust on Arctic aquatic ecosystems, Northwest Territories, Canada. MS Thesis, Brock University.
Hadley KR, 2007. Assessing Thule Inuit impacts on High Arctic lakes and ponds: A paleolimnological approach. MS Thesis, Queen’s University.
Hadley KR, Douglas MSV Lim D, Smol JP, 2013. Diatom assemblages and limnological variables from 40 lakes and ponds on Bathurst Is. and neighboring high Arctic Island. Int. Rev. Hydrobiol. 98:44–59. DOI: https://doi.org/10.1002/iroh.201201449
Haley S, Klick M, Szymoniak N, Crow A, 2011. Observing trends and assessing data for Arctic mining. Polar Geogr. 34:37–61. DOI: https://doi.org/10.1080/1088937X.2011.584449
Hamilton PB, Gajewski K, Atkinson DE, Lean DRS, 2001. Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457:133–148. DOI: https://doi.org/10.1023/A:1012275316543
Harrison JC, St–Onge MR, Petrov OV, Strelnikov SI, Lopatin BG, Wilson FH, Tella S, Paul D, Lynds T, Shokalsky SP, Hults CK, Bergman S, Jepsen HF, Solli A, 2011. Geological map of the Arctic / Carte géologique de l'Arctique, Map 2159A, scale 1:5 000 000. Geological Survey of Canada. DOI: https://doi.org/10.4095/287868
Havas M, Hutchinson TC, 1983. The Smoking Hills: natural acidification of an aquatic ecosystem. Nature 30:23–27. DOI: https://doi.org/10.1038/301023a0
Hessen DO, Tombre IM, van Geest G, Alfsnes K, 2017. Global change and ecosystem connectivity: How geese link fields of central Europe to eutrophication of Arctic freshwaters. Ambio 46:40-47. DOI: https://doi.org/10.1007/s13280-016-0802-9
Hines JE, Latour PB, Machtans CS, 2010. The effects on lowland habitat, breeding shorebirds and songbirds in the Banks Is. Migratory Bird Sancturay Number 1 by the growing colony of Lesser Snow Geese Chen caerulescens caerulescens. Canadian Wildlife Service Occasional Paper No. 118. Environment Canada, Ottawa.
Hodgson DA, 2005. Quaternary geology of Western Meta Incognita Peninsula and Iqaluit area, Baffin Is., Nunavut. Geol. Survey Can. Bull. 585:1–72. DOI: https://doi.org/10.4095/216570
ICP Waters Programme Centre, 2010. ICP Waters Programme Manual 2010. Norwegian Institute for Water Research, Oslo.
Johannesson KH, Lyons WB, 1995. Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Is., Northwest Territories, Canada. Chem. Geol. 119:209-223. DOI: https://doi.org/10.1016/0009-2541(94)00099-T
Keatley BE, 2007. Environmental change in three distinct ecosystem types, Canadian High Arctic. PhD Thesis, Department of Biology, Queen’s University.
Keatley BE, Douglas MSV, Smol JP, 2007. Limnological characteristics of a high Arctic oasis and comparisons Ellesmere Is. across Northern. Arctic 60:294–308. DOI: https://doi.org/10.14430/arctic221
Keatley BE, Douglas MS, Blais JM, Mallory ML, Smol JP, 2009. Impacts of seabird-derived nutrients on water quality and diatom assemblages from Cape Vera, Devon Is., Canadian High Arctic. Hydrobiologia 621:191-205. DOI: https://doi.org/10.1007/s10750-008-9670-z
Konhauser KO, Fyfe WS, Schultze-Lam S, Ferris FG, Beveridge TJ, 1994. Iron phosphate precipitation by epilithic microbial biofilms in Arctic Canada. Can. J. Earth Sci. 31:1320-1324. DOI: https://doi.org/10.1139/e94-114
Lamoureux SF, Gilbert R, 2004. Physical and chemical properties and proxies of high latitude lake sediments, p. 53-87. In: J.P. Smol, R. Pienitz and M.S.V. Douglas (eds.), Long-term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-2126-8_3
Law KS, Stohl A, 2007. Arctic air pollution: Origins and impacts. Science 315:1537–1540. DOI: https://doi.org/10.1126/science.1137695
Liang T, Aherne J, 2019. Critical loads of acidity and exceedances for 1138 lakes and ponds in the Canadian Arctic. Sci. Total Environ. 652:1424-1434. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.330
Lim DSS, Douglas MSV, 2003. Limnological characteristics of 22 lakes and ponds in the Haughton crater region of Devon Island, Nunavut, Canadian High Arctic. Arct. Antarct. Alpi. Res. 35:509–519. DOI: https://doi.org/10.1657/1523-0430(2003)035[0509:LCOLAP]2.0.CO;2
Lim DSS, Douglas MSV, Smol JP, 2005. Limnology of 46 lakes and ponds on Banks Is., N.W.T., Canadian Arctic Archipelago. Hydrobiologia 545:11–32. DOI: https://doi.org/10.1007/s10750-005-1824-7
Lim DSS, Douglas MSV, Smol JP, Lean DRS, 2001. Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Is., Nunavut, Canadian high arctic. Int. Rev. Hydrobiol. 86:1–22. DOI: https://doi.org/10.1002/1522-2632(200101)86:1<1::AID-IROH1>3.0.CO;2-E
Lougheed VL, Butler MG, McEwen DC, Hobbie JE, 2011. Changes in tundra pond limnology: Re-sampling Alaskan ponds after 40 years. Ambio 40:589–599. DOI: https://doi.org/10.1007/s13280-011-0165-1
Mallory ML, Fontaine AJ, Smith PA, Robertson MOW, Gilchrist HG, 2006. Water chemistry of ponds on Southampton Is., Nunavut, Canada: Effects of habitat and ornithogenic inputs. Arch. Hydrobiol. 166:411–432. DOI: https://doi.org/10.1127/0003-9136/2006/0166-0411
Maxwell JB, 1981. Climatic regions of the Canadian Arctic islands. Arctic 34:225–240. DOI: https://doi.org/10.14430/arctic2525
McNeely RN, Dwyer L, Neimanis VP, 1979. Water quality sourcebook: A guide to water quality parameters. Environment Canada, Inland Waters Directorate, Ottawa: 89 pp.
Medeiros AS, Biastoch RG, Luszczek CE, Wang XA, Muir DCG, Quinlan R, 2012. Patterns in the limnology of lakes and ponds across multiple local and regional environmental gradients in the eastern Canadian arctic. Inland Waters 2:59–76. DOI: https://doi.org/10.5268/IW-2.2.427
Meier WN, Stroeve J, Fetterer F, 2007. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol. 46:428–434. DOI: https://doi.org/10.3189/172756407782871170
Michelutti N, Blais JM, Mallory ML, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP, 2010. Trophic position influences the efficacy of seabirds as metal biovectors. Proc. Natl. Acad. Sci. 107:10543–10548. DOI: https://doi.org/10.1073/pnas.1001333107
Michelutti N, Douglas MSV, Smol JP, 2003. Diatom response to recent climatic change in a high arctic lake Char Lake, Cornwallis Is., Nunavut. Global Planet. Change 38:257–271. DOI: https://doi.org/10.1016/S0921-8181(02)00260-6
Michelutti N, Douglas MSV, Smol JP, 2007a. Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: A surface sediment calibration set from Cornwallis Is. Nunavut, Canada. Polar Biol. 30:1459–1473. DOI: https://doi.org/10.1007/s00300-007-0307-x
Michelutti N, Douglas MSV, Lean DRS, Smol JP, 2002b. Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria Is., Arctic Canada. Hydrobiologia 482:1–13. DOI: https://doi.org/10.1023/A:1021201704844
Michelutti N, Wolfe AP, Briner JP, Miller GH, 2007b. Climatically controlled chemical and biological development in Arctic lakes. J. Geophys. Res. Biogeosci. 112:(G3). DOI: https://doi.org/10.1029/2006JG000396
Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP. 2005. Recent primary production increased in Arctic lakes. Geophys. Res. Lett. 32:1-4. DOI: https://doi.org/10.1029/2005GL023693
Michelutti N, Douglas M, Muir D, Wang X, Smol JP, 2002a. Limnological characteristics of 38 lakes and ponds on Axel Heiberg Is., High Arctic Canada. Int. Rev. Hydrobiol. 87:385–399. DOI: https://doi.org/10.1002/1522-2632(200207)87:4<385::AID-IROH385>3.0.CO;2-3
Moiseenko TI, Sharov AN, Vandish OI, Kudryavtseva LP, Gashkina NA, Rose C, 2009. Long-term modification of Arctic lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia). Limnologica 39:1-13. DOI: https://doi.org/10.1016/j.limno.2008.03.003
Mortimer CH, 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29:280-329. DOI: https://doi.org/10.2307/2256395
Moser KA, Smol JP, MacDonald GM, 1998. Ecology and distribution of diatoms from boreal lakes in Wood Buffalo National Park, northern Alberta and the Northwest Territories, Canada. Hydrobiologia 23:25–43.
Neary BP, Dillon PJ, 1988. Effects of sulphur deposition on lake-water chemistry in Ontario, Canada. Nature 333:340-343. DOI: https://doi.org/10.1038/333340a0
Nürnberg GK, 1996. Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 124:432-447. DOI: https://doi.org/10.1080/07438149609354283
Osterkamp TE, Romanovsky VE, 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafr. Periglac. Process. 10:17-37. DOI: https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4
Outridge PM, Hermanson MH, Lockhart WL, 2002. Regional variations in atmospheric deposition and sources of anthropogenic lead in lake sediments across the Canadian Arctic. Geochim. Cosmochim. Acta 66:3521-3531. DOI: https://doi.org/10.1016/S0016-7037(02)00955-9
Overland JE, Hanna E, Hanssen-Bauer I, Kim SJ, Walsh JE, Wang M, Bhatt US, Thoman RL, 2017. Surface air temperature. Available from: https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/783/Surface-Air-Temperature
Paltan H, Dash J, Edwards M, 2015. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sensing 36:5970-5982. DOI: https://doi.org/10.1080/01431161.2015.1110263
Payette S, Delwaide A, Caccianiga M, Beauchemin M, 2004. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31 L18208. DOI: https://doi.org/10.1029/2004GL020358
Peters GP, Nilssen TB, Lindholt L, Eide MS, Glomsrød S, Eide LI, Fuglestvedt JS, 2011. Future emissions from shipping and petroleum activities in the Arctic. Atmos. Chem. Phys.11:5305-5320. DOI: https://doi.org/10.5194/acp-11-5305-2011
Pienitz R, Doran PT, Lamoureux SF, 2008. Origin and geomorphology of lakes in the polar regions, p. 25-41. In: F.V. Warwick and J. Laybourn-Parry (eds.), Polar lakes and rivers: Limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford DOI: https://doi.org/10.1093/acprof:oso/9780199213887.003.0002
Pienitz R, Smol JP, Lean DRS, 1997a. Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories Canada. Can. J. Fish. Aquat. Sci. 54:330-346. DOI: https://doi.org/10.1139/f96-274
Pienitz R, Smol JP, Lean DRS, 1997b. Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories Canada. Can. J. Fish. Aquat. Sci. 54:347-358. DOI: https://doi.org/10.1139/f96-275
Pizzolato L, Howell SEL, Dawson J, Laliberté F, Copland L, 2016. The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophys. Res. Lett. 43:146-154. DOI: https://doi.org/10.1002/2016GL071489
Plug LJ, Walls C, Scott BM, 2008. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys. Res. Lett. 35:1-5. DOI: https://doi.org/10.1029/2007GL032303
Polyakov IV, Walsh JE, Kwok R, 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Am. Meteorol. Soc. 93:145–151. DOI: https://doi.org/10.1175/BAMS-D-11-00070.1
Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE. Lévesque LMJ, Vincent WF, 2006. Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35:347–58. DOI: https://doi.org/10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2
Rautio M, Dufresne F, Laurion I, Bonilla S, Vincent WF, Christoffersen KS, 2011. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18:204–222. DOI: https://doi.org/10.2980/18-3-3463
Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, Beamish RJ, King JR, Carmichael TJ, Sawatzky CD, 2006. General effects of climate change on Arctic fishes and fish populations. Ambio 35:370–380. DOI: https://doi.org/10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2
Roberts KE, Lamoureux SF, Kyser TK, Muir DCG, Lafrenière MJ, Iqaluk D, Pieńkowski AJ, Normandeau A, 2017. Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Nat. Sci. Rep. 7:1–8. DOI: https://doi.org/10.1038/s41598-017-13658-9
Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, 2010. Thermal state of permafrost in Russia. Permafr. Perigl. Proc. 21:136-155. DOI: https://doi.org/10.1002/ppp.683
Rothrock DA, Yu Y, Maykut GA, 1999. Thinning of the Arctic sea‐ice cover. Geophys. Res. Lett. 26:3469-3472. DOI: https://doi.org/10.1029/1999GL010863
Rouse WR, Douglas MS, Hecky RE, Hershey AE, Kling GW, Lesack L, Marsh P, McDonald M, Nicholson BJ, Roulet NT, Smol JP, 1997. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrol. Proc.11:873–902. DOI: https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6
Rühland KM, Smol JP, 1998. Limnological characteristics of 70 lakes spanning Arctic treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. Int. Rev. Hydrobiol. 141:137–141. DOI: https://doi.org/10.1002/iroh.19980830302
Rühland KM, Smol JP, Wang X, Muir DCG. 2003. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region. J. Limnol. 62:9–27. DOI: https://doi.org/10.4081/jlimnol.2003.9
Sakamoto M, 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62:1–28.
Schindler DW, Kalff J, Welch HE, Brunskill GJ, Kling H, Kritsch N, 1974. Eutrophication in the High Arctic - Meretta Lake, Cornwallis Island (75 N Lat.). J. Fish. Res. Board Can. 31:647-662. DOI: https://doi.org/10.1139/f74-096
Smith LC, Sheng Y, MacDonald GM, Hinzman LD, 2005. Disappearing arctic lakes. Science 308:1429–1429. DOI: https://doi.org/10.1126/science.1108142
Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ, 2007. Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52:1208-1219. DOI: https://doi.org/10.4319/lo.2007.52.3.1208
Søndergaard M, Jensen JP, Jeppesen E, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135-145. DOI: https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
Spatt PD, 1978. Seasonal variation of growth conditions on a natural and dust impacted Sphagnum (Sphagnaceae) community in northern Alaska. MS Thesis, University of Cincinnati.
Stewart KA, Lamoureux SF, 2011. Connections between river runoff and limnological conditions in adjacent high arctic lakes: Cape Bounty, Melville Is., Nunavut. Arctic 64:169–182. DOI: https://doi.org/10.14430/arctic4097
Stonehouse B, 1989. Polar ecology. Blackie, Glasgow: 222 pp. DOI: https://doi.org/10.1007/978-1-4757-1260-5
Surdu CM, Duguay CR, Prieto DF, 2016. Evidence of recent changes in the ice regime of lakes in the Canadian high Arctic from spaceborne satellite observation. Cryosphere 10:941-960. DOI: https://doi.org/10.5194/tc-10-941-2016
Tarnocai C, 2003. Arctic permafrost soils, p. 3-17. In: R. Margesi (ed.), Permafrost soils. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-540-69371-0_1
Thienpont JR, Rühland KM, Pisaric MFJ, Kokelj SV, Kimpe LE, Blais JM, Smol JP, 2013. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshwater Biol. 58 337–353. DOI: https://doi.org/10.1111/fwb.12061
Vincent WF, Laurion I, Pienitz R, Walter Anthony KM, 2012. Climate impacts on Arctic lake ecosystems, p. 27-42. In: C.R Goldman, M. Kumagai and R.D. Robarts (Eds.), Climatic change and global warming of inland waters: Impacts and mitigation for ecosystems and societies. J. Wiley & Sons, Chichester. DOI: https://doi.org/10.1002/9781118470596.ch2
Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, CAVM Team, 2005. The Circumpolar Arctic vegetation map. J. Veget. Sci. 16:267-282. DOI: https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
Walvoord MA, Striegl RG, 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34:1–6. DOI: https://doi.org/10.1029/2007GL030216
Westover KS, Moser KA, Porinchu DF, MacDonald GM, Wang X, 2009. Physical and chemical limnology of a 61-lake transect across mainland Nunavut and southeastern Victoria Is., Central Canadian Arctic. Arch. Hydrobiol. 175:93–112. DOI: https://doi.org/10.1127/1863-9135/2009/0175-0093
Wetzel RG, 2001. Salinity of inland waters, p. 169-186. In: R.G. Wetzel RG, Limnology. Elsevier, Amsterdam. DOI: https://doi.org/10.1016/B978-0-08-057439-4.50014-9
Whalen SC, Cornwell JC, 1985. Nitrogen, phosphorus, and organic carbon cycling in an Arctic lake. Can. J. Fish. and Aquat. Sci. 42:797-808. DOI: https://doi.org/10.1139/f85-102
Wiken, Ed, Francisco J.N., and Griffith, G. 2011. North American Terrestrial Ecoregions – Level III. Commission for Environmental Cooperation, Montreal, Canada
Wilson SE, Gajewski K, 2002. Surface-sediment diatom assemblages and water chemistry from 42 subarctic lakes in the southwestern Yukon and northern British Columbia, Canada. Ecoscience 9:256-270. DOI: https://doi.org/10.1080/11956860.2002.11682712
Wolfe AP, Cooke CA, Hobbs WO, 2006. Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian Arctic? Arct. Antarct. Alp. Res. 38:465-476. DOI: https://doi.org/10.1657/1523-0430(2006)38[465:ACROAN]2.0.CO;2
Zhang X, Meyer T, Muir DC, Teixeira C, Wang X, Wania F, 2013. Atmospheric deposition of current use pesticides in the Arctic: Snow core records from the Devon Island Ice Cap, Nunavut, Canada. Environ. Sci. Processes Impacts 15:2304-2311. DOI: https://doi.org/10.1039/c3em00433c
Zhu L, Anello R, Rühland KM, Pisaric MFJ, Kokelj S, Prince T, Smol JP, 2019. Impacts of road dust on small subarctic lake systems. Arctic 72:337-484.

Edited by

Michela Rogora, CNR-IRSA Verbania, Italy

How to Cite

Liang, Tanner, and Julian Aherne. 2020. “Physical and Chemical Characteristics of 1300 Lakes and Ponds across the Canadian Arctic: Characteristics of Canadian Arctic Lakes and Ponds”. Journal of Limnology 79 (3). https://doi.org/10.4081/jlimnol.2020.1973.

Similar Articles

You may also start an advanced similarity search for this article.