Phosphorus dynamics in a subtropical coastal lake in Southern Brazil

Phosphorus dynamics in coastal lake

Submitted: 6 February 2019
Accepted: 3 August 2019
Published: 11 November 2019
Abstract Views: 861
PDF: 411
HTML: 9
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Temporal and spatial variations of organic and inorganic forms of phosphorus in the sediments of a subtropical oligo-mesotrophic shallow lake were investigated in relation to water column parameters, sediment characteristics and benthic fauna. The main results found were: 1) Phosphorus (P)  concentration varied seasonally, with organic P and total P  increasing in the sediments in warmer periods; 2) Sediment spatial variation, in terms of grain size composition and organic matter content, influenced P concentrations; 3) quantities and qualities of P in the sediments were positively correlated with water parameters, especially DO and NO3, Chl-a,  water temperature, pH, and total P. Negative correlations were observed between %OP and DO in sites 1, 3 and 4, and with NO3 in sites 2, 3 and 4; 4) benthic functional feeding groups showed significant relationships with temporal variation in sediment P concentration, including gathering-collectors, shredders, filterers and filtering-collectors. The results suggest a high importance of temperature mediated control of sediment-P release, both directly, through its direct effects on primary production and decomposition rates, and indirectly through its effects on other water and sediment parameters, especially dissolved oxygen concentration.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

An WC, Li XM, 2009. Phosphate adsorption characteristics at the sediment–water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers. Environ. Monit. Assess. 148:173-184. DOI: https://doi.org/10.1007/s10661-007-0149-6
Andersen FO, Jensen HS, 1992. Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in freshwater sediment. Hydrobiologia 228:71-81. DOI: https://doi.org/10.1007/BF00006478
Anthony JL, Lewis WM, 2012. Low boundary layer response and temperature dependence of nitrogen and phosphorus releases from oxic sediments of an oligotrophic lake. Aquat. Sci. 74:611-617. DOI: https://doi.org/10.1007/s00027-012-0255-6
Aspila KI, Agemian H, Chau ASY, 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187-197. DOI: https://doi.org/10.1039/an9760100187
Benelli S, Bartoli M, Zilius M, Vybernaite‐Lubiene I, Ruginis T, Petkuviene J, Fano EA, 2018. Microphytobenthos and chironomid larvae attenuate nutrient recycling in shallow‐water sediments. Freshwater Biol. 2:187-201. DOI: https://doi.org/10.1111/fwb.13052
Boers PCM, 1991. The influence of pH on phosphate release from lake sediments. Water Res. 25:309-311. DOI: https://doi.org/10.1016/0043-1354(91)90010-N
Burger DF, Hamilton DP, Pilditch CA, Gibbs MM, 2007. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584:13-25. DOI: https://doi.org/10.1007/s10750-007-0582-0
Burnham KP, Anderson DR, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York: 488 pp.
Caliman A, Leal JJF, Esteves FA, Carneiro LS, Bozelli RL, Farjalla VF, 2007. Functional bioturbator diversity enhances benthic-pelagic processes and properties in experimental microcosms. J. N. Am. Benthol. Soc. 26:450-459. DOI: https://doi.org/10.1899/06-050.1
Caraco NF, 1993. Disturbance of the phosphors cycle: a case of indirect effects of human activity. Trends Ecol. Evol. 8:51-54. DOI: https://doi.org/10.1016/0169-5347(93)90158-L
Chapra SC, Dove A, Warren GJ, 2012. Long-term trends of Great Lakes major ion chemistry. J. Great Lakes Res. 38: 550-560. doi:10.1016/j.jglr.2012.06.010 DOI: https://doi.org/10.1016/j.jglr.2012.06.010
Chuai X, Zhou H, Chen X, Yang L, Zeng J, 2013. Effects of different primary producers (Cyanobacteria and Macrophyte) on the spatio-temporal distribution of phosphorus forms and concentrations in a lake. Pol. J. Environ. Stud. 22:1649-1659.
Clarke KR, Warwick RM, 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory: 176 pp.
Cummins KW, Merritt RW, Andrade PCN, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud. Neotrop. Fauna Environ. 40:69-89. DOI: https://doi.org/10.1080/01650520400025720
Dong L, Yang Z, Liu X, 2011. Phosphorus fractions, sorption characteristics, and its release in the sediments of Baiyangdian Lake, China. Environ. Monit. Assess. 179:335-345. DOI: https://doi.org/10.1007/s10661-010-1740-9
Doremus C, Clesceri LS, 1982. Microbial metabolism in surface sediments and its role in the immobilization of phosphorus in oligotrophic lake sediments. Hydrobiologia 91:261-268. DOI: https://doi.org/10.1007/978-94-009-8009-9_27
Elser JJ, Hayakawa K, Urabe J, 2011. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898-903. doi: 10.1890/0012-9658(2001)082[0898:NLRFQF]2.0.CO;2
Engstrom DR, Almendinger JE, Wolin JA, 2009. Historical changes in sediment and phosphorus loading to the upper Mississippi River: mass-balance reconstructions from the sediments of Lake Pepin. J. Paleolimnol. 41:563-588. DOI: https://doi.org/10.1007/s10933-008-9292-5
Epler JH, 1995. Identification manual for the larvae Chironomidae (Diptera) of Florida Department of Environmental Protection, Division of Water Facilities, Tallahassee: 250 pp.
Fuentes EV, Petrucio MM, 2015.Water level decrease and increased water stability promotes phytoplankton growth in a mesotrophic subtropical lake. Mar. Freshw. Res. 66:711-718. DOI: https://doi.org/10.1071/MF14110
Gächter R, Meyer JS, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253:103-121. DOI: https://doi.org/10.1007/978-94-011-1598-8_14
Golterman HL, Clymo RS, Ohnstad MAM, 1978. Methods for physical and chemical analysis of freshwater. Blackwell Scientific, Hoboken: 213 pp.
Hennemann MC, Petrucio MM, 2011. Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environ. Monit. Assess. 181:347-361. DOI: https://doi.org/10.1007/s10661-010-1833-5
Hennemann MC, Simonassi JC, Petrucio MM, 2015. Paleolimnological record as an indication of incipient eutrophication in an oligotrophic subtropical coastal lake in Southern Brazil. Environ. Monit. Assess. 187:513. doi.org/10.1007/s10661-015-4726-9 DOI: https://doi.org/10.1007/s10661-015-4726-9
Hou E, Chen C, McGroddy ME, Wen D, 2012. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS One 7:e52071. https://doi.org/10.1371/journal.pone.0052071 DOI: https://doi.org/10.1371/journal.pone.0052071
Hupfer M, Lewandowski J, 2008. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93:415-432. doi:10.1002/iroh.200711054 DOI: https://doi.org/10.1002/iroh.200711054
Jensen HS, Andersen F, 1992. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr. 37:577-589. DOI: https://doi.org/10.4319/lo.1992.37.3.0577
Kaiserli A, Voutsa D, Samara C, 2002. Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia, N. Greece. Chemosphere 46:1147-1155. DOI: https://doi.org/10.1016/S0045-6535(01)00242-9
Kangur M, Puusepp L, Buhvestova O, Haldna M, Kangur K, 2013. Spatio-temporal variability of surface sediment phosphorus fractions and water phosphorus concentration in Lake Peipsi (Estonia/Russia). Est. J. Earth Sci. 62:171-180. DOI: https://doi.org/10.3176/earth.2013.14
Katsev S, Tsandev I, L’Heureux I, Rancourt DG, 2006. Factors controlling long-term phosphorus efflux from lake sediments: Exploratory reactive-transport modeling. Chem. Geol. 234:127-147. DOI: https://doi.org/10.1016/j.chemgeo.2006.05.001
Kinsman-Costello LE, Hamilton SK, O’Brien JM, Lennon JT, 2016. Phosphorus release from the drying and reflooding of diverse shallow sediments. Biogeochemistry 130:159.176. DOI: https://doi.org/10.1007/s10533-016-0250-4
Kleeberg A, Dudel GE, 1997. Changes in extent of phosphorus release in a shallow lake (Lake Groβer Miiggelsee; Germany, Berlin) due to climatic factors and load. Mar. Geol. 139:61-75. DOI: https://doi.org/10.1016/S0025-3227(96)00099-0
Kleeberg A, Herzog C, 2014. Sediment microstructure and resuspension behavior depend on each other. Biogeochemistry 119:199-213. DOI: https://doi.org/10.1007/s10533-014-9959-0
Koroleff F, 1976. Determination of nutrients, p. 117-181. In: K. Grasshoff (ed.), Methods of seawater analysis. J. Wiley & Sons, Chichester.
Lemes-Silva AL, Pires JR, Pagliosa PR, Petrucio MM, 2016. Distribution of aquatic macroinvertebrate assemblages in a subtropical coastal lake: response to environmental parameters. Fundam. Appl. Limnol. 188:113-127. DOI: 10.1127/fal/2016/0786 DOI: https://doi.org/10.1127/fal/2016/0786
Lemes-Silva AL, Petrucio MM, 2018. Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake. Environ. Monit. Assess. 190:548. DOI: https://doi.org/10.1007/s10661-018-6929-3
Lijklema L, 1993. Considerations in modeling the sediment-water exchange of phosphorus. Hydrobiologia 253:219-231. DOI: https://doi.org/10.1007/978-94-011-1598-8_27
Lisboa LK, Lemes-Silva AL, Petrucio MM, 2011. Aquatic invertebrate’s distribution in a freshwater coastal lagoon of southern Brazil in relation to water and sediment characteristics. Acta Limnol. Brasil 23:1-9. DOI: https://doi.org/10.1590/S2179-975X2011000200002
Liu E, Shen J, Yang X, Zhang E, 2012. Spatial distribution and human contamination quantification of trace metals and phosphorus in the sediments of Chaohu Lake, a eutrophic shallow lake, China. Environ. Monit. Assess. 184:2105-2118. DOI: https://doi.org/10.1007/s10661-011-2103-x
Lorenzen CJ, 1967. Determination of chlorophyll and phaeopigments: spectrometric equations. Limnol. Oceanogr. 12:343-346. DOI: https://doi.org/10.4319/lo.1967.12.2.0343
Mackereth FJH, Heron J, Talling JF, 1978. Water analysis: Some revised methods for limnologists. Freshwater Biological Association, Cumbria: 120 pp.
Malmqvist B, Rundle S, 2002. Threats to running water ecosystems of the word. Environ. Conserv. 29:134-153. DOI: https://doi.org/10.1017/S0376892902000097
Merritt RW, Cummins KW, 1984. An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque: 722 pp.
Montigny C, Prairie YT, 1993. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253:141-150. DOI: https://doi.org/10.1007/978-94-011-1598-8_17
Mortimer CH, 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29:280-329. DOI: https://doi.org/10.2307/2256395
Pech D, Ardisson PL, Hernández-Guevara NA, 2007. Benthic community response to habitat variation: A case of study from a natural protected area, the Celestun coastal lagoon. Cont. Shelf Res. 27:2523-2533. DOI: https://doi.org/10.1016/j.csr.2007.06.017
Pieczynska E, 1993. Detritus and nutrient dynamics in the shore zone of lakes: a review. Hydrobiologia 251:49-58. DOI: https://doi.org/10.1007/978-94-011-1602-2_7
Søndergaard M, Jensen PJ, Jeppesen E, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. ‎Sci. World. 1:427-442. DOI: https://doi.org/10.1100/tsw.2001.72
Søndergaard M, Jensen PJ, Jeppesen E, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 509:135-145. DOI: https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
Spears BM, Carvalho L, Perkins R, Kirika A, Paterson DM, 2006. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Res. 40:383-391. DOI: https://doi.org/10.1016/j.watres.2005.11.013
Strickland JDH, Parsons TR, 1960. A manual of seawater analysis. B. Fish. Res. Board Can. 125:1-185.
Suguio K, 1973. [Introdução a sedimentologia].[Book in Portuguese]. Edgar Blucher Ltda, São Paulo: 317 pp.
Tomanova S, Usseglio-Polatera P, 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundam. Appl. Limnol. Arch. Hydrobiol. 170:155-167. DOI: https://doi.org/10.1127/1863-9135/2007/0170-0243
Tonetta D, Staehr PA, Petrucio MM, 2017. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia 794:109-123. Doi 10.1007/s10750-017-3085-7. DOI: https://doi.org/10.1007/s10750-017-3085-7
Torres IC, Turner BL, Reddy KR, 2014. The Chemical Nature of Phosphorus in Subtropical Lake Sediments. Aquat. Geochem. 20:437-457. DOI: https://doi.org/10.1007/s10498-014-9228-9
Trivinho-Strixino S, Strixino G, 1995. [Larvas de Chironomidae (Diptera) do Estado de São Paulo. Guia de identificação e diagnose dos gêneros].[Book in Portuguese]. PPG-ERN/UFSCAR, São Carlos, 229 pp.
Valderrama JC, 1981. The simultaneous analysis of total nitrogen and phosphorous in natural waters. Mar. Chem. 10:109-122. DOI: https://doi.org/10.1016/0304-4203(81)90027-X
Wallace JB, Webster JR, 1996. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41:115-39. DOI: https://doi.org/10.1146/annurev.en.41.010196.000555
Wazbinzki KE, Quinlan R, 2013. Midge (Chironomidae, Chaoboridae, Ceratopogonidae) assemblages and their relationship with biological and physicochemical variables in shallow, polymictic lakes. Freshwater Biol. 58:2464-2480. DOI: https://doi.org/10.1111/fwb.12223
Wetzel RG, 2001. Limnology: Lake and river ecosystems. San Diego Academic Press, San Diego: 1006 pp.
Wu Y, Wen Y, Zhou J, Wu Y, 2014. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J. Civil Eng. 18:323-329. DOI: https://doi.org/10.1007/s12205-014-0192-0
Zhang L, Liao Q, Gu X, He W, Zhang Z, Fan C, 2014. Oxygen and phosphorus dynamics in freshwater sediment after the deposition of flocculated cyanobacteria and the role of tubificid worms. J. Hazard Mater. 266:1-9. DOI: https://doi.org/10.1016/j.jhazmat.2013.12.008
Zhu Y, Zhang R, Wu F, Qu X, Xie F, Fu Z, 2013. Phosphorus fractions and bioavailability in relation to particle size characteristics in sediments from Lake Hongfeng, Southwest China. Environ. Earth Sci. 68:1041-1052. DOI: https://doi.org/10.1007/s12665-012-1806-9

Edited by

Michela Rogora, CNR-IRSA Verbania, Italy

Supporting Agencies

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil), research grants 486177/2007-6 and 473572/2008-7

How to Cite

Lemes da Silva, Aurea L., Mariana C. Hennemann, and Mauricio M. Petrucio. 2019. “Phosphorus Dynamics in a Subtropical Coastal Lake in Southern Brazil: Phosphorus Dynamics in Coastal Lake”. Journal of Limnology 79 (1). https://doi.org/10.4081/jlimnol.2019.1894.