Presence and patterns of alkaline phosphatase activity and phosphorus cycling in natural riparian zones under changing nutrient conditions

Submitted: 19 April 2014
Accepted: 16 August 2014
Published: 22 August 2014
Abstract Views: 3249
PDF: 923
HTML: 1124
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Phosphorus (P) is an important limiting nutrient in aquatic ecosystems and knowledge of P cycling is fundamental for reducing harmful algae blooms and other negative effects in water. Despite their importance, the characteristics of P cycling under changing nutrient conditions in shallow lakes were poorly investigated. In this study, in situ incubation experiments were conducted in a natural riparian zone in the main diversion channel used for water transfer into Lake Taihu (Wangyu River). Variations in microbial biomass, dissolved P fractions (organic and inorganic), and alkaline phosphatase activity (bulk APA and specific APA) were determined after incubation with and without the addition of P and nitrogen (N) (4 total water treatments: +P, +N, +NP, and control). Experiments were conducted during two seasons (late spring and early fall) to account for natural differences in nutrient levels that may occur in situ. Our results demonstrated that low levels of DRP may not necessarily indicate P limitation. Phytoplankton exhibited “serial N limitation with P stress” in May, such that chlorophyll a (Chl a) increased significantly with N addition, while the limiting nutrient shifted to P in October and phytoplankton biomass increased with P addition. Phytoplankton contributed greatly to APA production and was significantly influenced by P bioavailability, yet high levels of bulk APA were also not necessarily indicative of P limitation. In contrast to phytoplankton, bacteria were less P stressed. As a consequence of enhanced utilization of dissolved reactive P (DRP) and dissolved organic P (DOP), +N treatment elevated APA significantly. By contrast, APA could be repressed to low values and phytoplankton converted a large portion of DRP to DOP with P addition. But this was not consistent with bacteria APA (bact-APA) in the absence or presence of abundant phytoplankton biomass. The correlation between bulk APA and DRP was good at separate sites and discrepant for the whole data set. Regulation of APA was demonstrated by an inverse hyperbolic relationship between bulk APA, specific APA, and DRP, with a transition from high to low activity occurring between 20 and 50 μg L-1. This study provides a better understanding of how APA and P cycling change with nutrient perturbations in Lake Taihu system. The obtained results can help understanding the process of P cycling in water and providing a reference for nutrient control in the water transfer project.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

National Natural Science Funds for Distinguished Young Scholar, Jiangsu Province Science Fund for Distinguished Young Scholar, Major Special S&T Project on Water Pollution Control and Management, Innovative Research Team in University, Jiangsu Qinglan

How to Cite

Wang, Peifang, Lingxiao Ren, Chao Wang, Jin Qian, and Jun Hou. 2014. “Presence and Patterns of Alkaline Phosphatase Activity and Phosphorus Cycling in Natural Riparian Zones under Changing Nutrient Conditions”. Journal of Limnology 74 (1). https://doi.org/10.4081/jlimnol.2014.1004.