Temporal and spatial heterogeneity in lacustrine δ13CDIC and δ18ODO signatures in a large mid-latitude temperate lake

Submitted: 6 December 2011
Accepted: 6 December 2011
Published: 1 August 2010
Abstract Views: 1782
PDF: 553
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Modelling limnetic carbon processes is necessary for accurate global carbon models and stable isotope analysis can provide additional insight of carbon flow pathways. This research examined the spatial and temporal complexity of carbon cycling in a large temperate lake. Dissolved inorganic carbon (DIC) is utilised by photosynthetic organisms and dissolved oxygen (DO) is used by heterotrophic organisms during respiration. Thus the spatial heterogeneity in the pelagic metabolic balance in Loch Lomond, Scotland was investigated using a combined natural abundance isotope technique. The isotopic signatures of dissolved inorganic carbon (δ13CDIC) and dissolved oxygen (δ18ODO) were measured concurrently on four different dates between November 2004 and September 2005. We measured isotopic variation over small and large spatial scales, both horizontal distance and depth. δ13CDIC and δ18ODO changed over a seasonal cycle, becoming concurrently more positive (negative) in the summer (winter) months, responding to increased photosynthetic and respiratory rates, respectively. With increasing depth, δ13CDIC became more negative and δ18ODO more positive, reflecting the shift to a respiration-dominated system. The horizontal distribution of δ13CDIC and δ18ODO in the epilimnion was heterogeneous. In general, the south basin had the most positive δ13CDIC, becoming more negative with increasing latitude, except in winter when the opposite pattern was observed. Areas of local variation were often observed near inflows. Clearly δ13CDIC and δ18ODO can show large spatial heterogeneity, as a result of varying metabolic balance coupled with inflow proximity and thus single point sampling to extrapolate whole lake metabolic patterns can result in error when modelling large lake systems Whilst we advise caution when using single point representation, we also show that this combined isotopic approach has potential to assist in constructing detailed lake carbon models.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

BASS, Adrian M., Susan WALDRON, Tom PRESTON, Colin E. ADAMS, and Jane DRUMMOND. 2010. “Temporal and Spatial Heterogeneity in Lacustrine δ13CDIC and δ18ODO Signatures in a Large Mid-Latitude Temperate Lake”. Journal of Limnology 69 (2):341-49. https://doi.org/10.4081/jlimnol.2010.341.

List of Cited By :

Crossref logo