Original Articles

Copepoda of lowland springs: diversity patterns and integrative taxonomy of Cyclops

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 17 October 2025
210
Views
147
Downloads
5
HTML

Authors

Groundwater copepods in lowland Europe remain insufficiently studied compared to those from mountainous regions. Here, we present the results of a faunistic and ecological survey of lowland springs, conducted in the context of earlier research on groundwater copepods from over 100 wells in the same region. Springs, as natural interfaces between aquifers and surface waters, provide more diverse habitats and favorable conditions for groundwater-affiliated fauna. We examined copepod assemblages in 36 lowland springs in northeastern Poland, representing rheocrene, limnocrene, and helocrene types, which were sampled in summer and autumn. We identified a total of 23 species of Copepoda, comprising 13 Cyclopoida and 10 Harpacticoida. Most of these species were associated with hyporheic or groundwater habitats. Cyclopoida dominated in terms of abundance, especially in limnocrene springs, and showed little seasonal variation, while Harpacticoida exhibited markedly higher diversity and abundance in summer. The Cyclopoida assemblage was dominated by Eucyclops serrulatus, Diacyclops bicuspidatus, and Cyclops strenuus, whereas Harpacticoida were represented mainly by Attheyella crassa, Canthocamptus staphylinus, and by five Bryocamptus species. Many of the common copepod species were also found in groundwater wells in the same region. Still, overall richness, particularly of Harpacticoida, was higher in springs due to the presence of heterogeneous benthic microhabitats. We identified three Cyclops species in the springs that were not recorded in the groundwater (wells) of this region. Conversely, we did not detect C. furcifer in the studied springs, despite its presence in nearby wells and temporary puddles. To present taxonomic relationships within the genus Cyclops, we applied an integrative taxonomic approach that combined morphological traits with 12S rRNA and ITS-1 markers. This confirmed the presence of three distinct species: C. strenuus, C. insignis, and C. borealis (considered a senior synonym of C. heberti), for which we provide descriptions of key morphological traits together with molecular data. These findings highlight the function of lowland springs as ecotonal habitats fostering distinct copepod assemblages, including taxa characteristic of both groundwater and benthic microhabitats.

Downloads

Download data is not yet available.

Citations

Błędzki LA, Rybak JI, 2016. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer, Berlin DOI: https://doi.org/10.1007/978-3-319-29871-9
Bottazzi E, Bruno MC, Pieri V, Di Sabatino A, Silveri L, Carolli M, Rossetti G, 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene spring. J Limnol 70:77-92. DOI: https://doi.org/10.4081/jlimnol.2011.s1.77
Boxshall GA, Defaye D, 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595:195-207. DOI: https://doi.org/10.1007/s10750-007-9014-4
Brittain JE, Eikeland TJ, 1988. Invertebrate drift - A review. Hydrobiologia 166:77-93. DOI: https://doi.org/10.1007/BF00017485
Castaño-Sanchez A, Pereira JL, Goncalves FJM, Reboleira ASPS, 2021. Sensitivity of a widespread groundwater copepod to different contaminants. Chemosphere 274:129911. DOI: https://doi.org/10.1016/j.chemosphere.2021.129911
Cerasoli F, Di Lorenzo T, Di Cicco M, Di Giuseppe D, Mancini E, Di Sabatino A, 2023. Assessing spatial and temporal changes in diversity of copepod crustaceans: a key step for biodiversity conservation in groundwater-fed springs. Front Environ Sci 11:1051295. DOI: https://doi.org/10.3389/fenvs.2023.1051295
Chu KH, Li CP, Ho HY, 2001. The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in crustacea. Mar Biotechnol (NY) 3:355-361. DOI: https://doi.org/10.1007/s10126001-0014-5
Deharveng L, Stoch F, Gibert J, Bedos A, Galassi D, Zagmajster M, et al. 2009. Groundwater biodiversity in Europe. Freshwater Biol 54:709-726. DOI: https://doi.org/10.1111/j.1365-2427.2008.01972.x
Dumnicka E, Galas J, 2017. An overview of stygobiontic invertebrates of Poland based on published data. Subterr Biol 23:1-18. DOI: https://doi.org/10.3897/subtbiol.23.11877
Dumnicka E, Galas J, Nejberek K, Urban J, 2020. The influence of Pleistocene glaciations on the distribution of obligate aquatic subterranean invertebrate fauna in Poland. Zool Anz 286:90-99. DOI: https://doi.org/10.1016/j.jcz.2020.04.003
Einsle U, 1996a. Copepoda: Cyclopoida. Genera Cyclops, Megacyclops, Acanthocyclops, p. 1-82. In: HJF Dumont (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing.
Einsle U, 1996b. Cyclops heberti n.sp. and Cyclops singularis n.sp., two new species within the genus Cyclops (‘strenuus-subgroup’) (Crust. Copepoda) from ephemeral ponds in southern Germany. Hydrobiologia 319:167-177. DOI: https://doi.org/10.1007/BF00013729
Ejsmont-Karabin J, Kalinowska K, Karpowicz M, 2020. Structure of Ciliate, Rotifer, and Crustacean Communities in lake systems of Northeastern Poland, p. 77.101. In: E Korzeniewska and M Harnisz (eds.), Polish River Basins and Lakes – Part II. The Handbook of Environmental Chemistry 87. Springer. DOI: https://doi.org/10.1007/978-3-030-12139-6_4
Ferreira D, Malard F, Dole-Olivier M-J, Gibert J, 2007. Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiv Conserv 16: 567-596. DOI: https://doi.org/10.1007/s10531-005-0305-7
Galassi DMP, 2001. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453:227-253. DOI: https://doi.org/10.1023/A:1013100924948
Galassi DMP, Huys R, Reid JW, 2009. Diversity, ecology and evolution of groundwater copepods. Freshwater Biol 54:691-708. DOI: https://doi.org/10.1111/j.1365-2427.2009.02185.x
Gibert J, Culver DC, 2009. Assessing and conserving groundwater biodiversity: an introduction. Freshwater Biol 54:639-648. DOI: https://doi.org/10.1111/j.1365-2427.2009.02202.x
Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98.
Hołyńska M, Dahms HU, 2004. New diagnostic microcharacters of the cephalothoracic appendages in Cyclops O. F. Müller, 1776 (Crustacea, Copepoda, Cyclopoida). Zoosystema 26:175-198.
Hołyńska M, Wyngaard GA, 2019. Towards a phylogeny of Cyclops (Copepoda):(in)congruences among morphology, molecules and zoogeography. Zool Scr 48:376-398. DOI: https://doi.org/10.1111/zsc.12342
Hołyńska M, Świsłocka-Cutter M, López C, Karpowicz M, 2025. Freshwater cyclopids (Crustacea: Copepoda) first recorded in South America - arguments for and against their non-native status. Eur Zool J 92:631-659. DOI: https://doi.org/10.1080/24750263.2025.2503319
Iannella M, Fiasca B, Di Lorenzo T, Biondi M, Di Cicco M, Galassi DMP, 2020. Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe. Sci Rep 10:19043. DOI: https://doi.org/10.1038/s41598-020-76018-0
Janetzky W, Enderle R, Noodt W, 1996. Crustacea: Copepoda: Gelyelloida und Harpacticoida. Süßwasserfauna von Mitteleuropa 8. Gustav Fischer Verlag.
Jekatierynczuk-Rudczyk E, Ejsmont-Karabin J, 2023. Rotifers of inter-forest springs. Diversity 15:153. DOI: https://doi.org/10.3390/d15020153
Karanovic T, Krajiček M, 2012. First molecular data on the Western Australian Diacyclops (Copepoda, Cyclopoida) confirm morpho-species but question size differentiation and monophyly of the alticola-group. Crustaceana 85:1549-1569. DOI: https://doi.org/10.1163/156854012X651709
Karaytug S, Boxshall GA, 1998. The Paracyclops fimbriatus-complex (Copepoda, Cyclopoida): a revision. Zoosystema 20:563-602. DOI: https://doi.org/10.5962/p.268906
Karpowicz M, 2016. New data to the knowledge on the Harpacticoida (Crustacea, Copepoda) fauna in Poland. Fragm Faun 59:87-98. DOI: https://doi.org/10.3161/00159301FF2016.59.2.087
Karpowicz M, Ejsmont-Karabin J, 2021. Diversity and structure of pelagic zooplankton (Crustacea, Rotifera) in NE Poland. Water 13:456. DOI: https://doi.org/10.3390/w13040456
Karpowicz M, Smolska S, Świsłocka M, Moroz J, 2021. First insight into groundwater copepods of the Polish lowland. Water 13:2086. DOI: https://doi.org/10.3390/w13152086
Karpowicz M, Smolska S, 2024. Ephemeral puddles - potential sites for feeding and reproduction of hyporheic Copepoda. Water 16:1068. DOI: https://doi.org/10.3390/w16071068
Krajíček M, Fott J, Miracle MR, Ventura M, Sommaruga R, Kirschner P, Černý M, 2016. The genus Cyclops (Copepoda, Cyclopoida) in Europe. Zool Scr 45:671-682. DOI: https://doi.org/10.1111/zsc.12183
Lindberg K, 1956. Courtes diagnoses de quelques membres nouveaux ou peu connus du genre Cyclops s. str. Boll Soc Entomol Ital 86:112-117.
Machida RJ, Miya MU, Nishida M, Nishida S, 2004. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332:71-78. DOI: https://doi.org/10.1016/j.gene.2004.01.019
Martin P, De Broyer C, Fiers F, Michel G, Sablon R, Wouters K, 2009. Biodiversity of Belgian groundwater fauna in relation to environmental conditions. Freshwater Biol 54:814-829. DOI: https://doi.org/10.1111/j.1365-2427.2008.01993.x
Mirabdullayev IM, Defaye D, 2004. On the taxonomy of the Acanthocyclops robustus species complex (Copepoda, Cyclopidae): Acanthocyclops brevispinosus and A. einslei sp. n. Vestn Zool 38:27-37.
Novikov A, Sharafutdinova D, 2022. Revision of the genus Canthocamptus (Copepoda: harpacticoida) with a description of a new species from the Lena River Delta (Northeastern Siberia). Eur J Taxon 826:33-63. DOI: https://doi.org/10.5852/ejt.2022.826.1833
Nowakowski K, Sługocki Ł, 2024. Contrasting responses of Thermocyclops crassus and T. oithonoides (Crustacea, Copepoda) to thermal stress. Sci Rep 14:7660. DOI: https://doi.org/10.1038/s41598-024-58230-4
Pendino V, Vecchioni L, Stoch F, Marrone F, 2024. Checklist and distribution of the groundwater crustacean fauna from Sicily, Italy. J Limnol 83:2199. DOI: https://doi.org/10.4081/jlimnol.2024.2199
Pociecha A, Karpowicz M, Namiotko T, Dumnicka E, Galas J, 2021. Diversity of groundwater crustaceans in wells in various geologic formations of southern Poland. Water 13:2193. DOI: https://doi.org/10.3390/w13162193
Posada D, 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253-1256. DOI: https://doi.org/10.1093/molbev/msn083
Rouch R, 1994. Copepoda, p. 105-111. In: C Juberthie and V Decu (eds.), Encyclopaedia Biospeologica. International Society for Subterranean Biology.
Särkkä J, Levonen L, Mäkelä J, 1997. Meiofauna of springs in Finland in relation to environmental factors. Hydrobiologia 347:139-150. DOI: https://doi.org/10.1023/A:1003031621659
Särkkä J, Levonen L, Mäkelä J, 1998. Harpacticoid and cyclopoid fauna of groundwater and springs in southern Finland. J Mar Syst 15:155-161. DOI: DOI: https://doi.org/10.1016/S0924-7963(97)00075-4
Smolska S, Karpowicz M, Świsłocka M, Jekatierynczuk-Rudczyk E, Więcko A, Tarasewicz K, 2024. The patchy distribution of groundwater copepods in the lowland river valley. Ecohydrol Hydrobiol 24:773-784. DOI: https://doi.org/10.1016/j.ecohyd.2023.11.012
Stoch F, 2007. Copepods colonising Italian springs. In: M Cantonati, E Bertuzzi and D Spitale (eds.), The spring habitat: biota and sampling methods. Monografie del Museo Tridentino di Scienze Naturali 4:217-235.
Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S, 1995. An endemic groundwater fauna in unglaciated eastern North America. Can J Zool 73:502-508. DOI: https://doi.org/10.1139/z95-057
Sukhikh N, Alekseev V, 2015. Genetic and morphological heterogeneity within Eucyclops serrulatus (Fischer, 1851) (Crustacea: Copepoda: Cyclopidae). J Nat Hist 49:2929-2953. DOI: https://doi.org/10.1080/00222933.2015.1056267
Tamura K, Stecher G, Kumar S, 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022-3027. DOI: https://doi.org/10.1093/molbev/msab120
Výravský D, Hřívová DK, Bojková J, Horsák M, Zhai M, 2023. Effects of thermal stability on microcrustacean assemblages in spring fens. Inland Waters 13:86-100. DOI: https://doi.org/10.1080/20442041.2022.2139585
Zhai M, Hřívová D, Peterka T, 2015. The harpacticoid assemblages (Copepoda: Harpacticoida) in the Western Carpathian spring fens in relation to environmental variable and habitat age. Limnologica 53:84-89. DOI: https://doi.org/10.1016/j.limno.2015.07.001

Ethics Approval

Diego Fontaneto, CNR-IRSA Water Research Institute, Verbania-Pallanza, Italy

Supporting Agencies

Polish Ministry of Science and Higher Education

How to Cite



“Copepoda of Lowland Springs: Diversity Patterns and Integrative Taxonomy of Cyclops”. 2025. Journal of Limnology 84 (October). https://doi.org/10.4081/jlimnol.2025.2242.