Original Articles
17 September 2025

Biogeochemical drivers of methane dynamics in the water column of Georgian Bay’s embayment, Lake Huron

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
51
Views
61
Downloads
0
HTML

Authors

Methane (CH4) production in oxygenated freshwater systems remains an active area of research in biogeochemistry. This study investigates CH4 dynamics in Honey Harbour’s North Bay, a stratified freshwater oligotrophic embayment of Georgian Bay (Lake Huron), by integrating microbial community analyses, and geochemical measurements. The field study was conducted in 2021, with four sampling campaigns carried out during the months of July, August, September, and October. During stable stratification, CH4 is present in oxic surface water with a maximum of 4.69 μg/L in September. The abundance of Synechococcus in surface waters indicates that CH4 formation may be driven by methylphosphonate (MPn) degradation under phosphorus limitation conditions. Additionally, methanogenic archaea were detected in oxic waters, indicating possible methanogenesis in oxic surface freshwaters. The CH4 oxidation possibly was supported by Fe- and Mn-reducing bacteria such as Geothrix and Methylobacter, which increased at depths below chemocline. Redundancy analysis (RDA) demonstrated strong positive correlations between CH4, photosynthetically active radiation (PAR), and microbes linked to CH4 cycling. Our study shows that CH4 production in surface waters is influenced by phototrophic and archaeal activity, whereas deeper waters exhibit CH4 oxidation coupled to metal cycling and Fe- and Mn-reducing bacteria. This study provides novel insights into microbial and geochemical interactions regulating CH4 emissions in oligotrophic freshwaters of Georgian Bay embayment.

Altmetrics

Downloads

Download data is not yet available.

Citations

Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S. 2020. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol 10:3041 DOI: https://doi.org/10.3389/fmicb.2019.03041
APHA 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC.
Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:1-12. DOI: https://doi.org/10.1029/2004GB002238
Bastviken D, Cole JJ, Pace ML, Van de-Bogert MC. 2008. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci 113:G02024. DOI: https://doi.org/10.1029/2007JG000608
Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50. DOI: https://doi.org/10.1126/science.1196808
Beversdorf LJ, White AE, Björkman K, Letelier RM, Karl DM. 2010. Phosphonate metabolism of Trichodesmium IMS101 and the production of methane in the upper ocean. Limnol Oceanogr 55:1768-1778. DOI: https://doi.org/10.4319/lo.2010.55.4.1768
Bižić-Ionescu M, Ionescu D, Günthel M, Tang KW, Grossart HP. 2018. Oxic methane cycling: New evidence for methane formation in oxic lake water, pp. 1-22. In: Stams AJM, Sousa D (eds.), Biogenesis of hydrocarbons. Springer. DOI: https://doi.org/10.1007/978-3-319-53114-4_10-1
Bižić M. 2021. Phytoplankton photosynthesis: An unexplored source of biogenic methane emission from oxic environments. J Plankton Res 43:822-830. DOI: https://doi.org/10.1093/plankt/fbab069
Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, et al. 2020. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv 6:eaax5343. DOI: https://doi.org/10.1126/sciadv.aax5343
Bogard MJ, del Giorgio PA, Boutet L, Chaves MC, Prairie YT, Merante A, Derry AM, 2014. Oxic water column methanogenesis as a major component of aquatic CH₄ fluxes. Nat Commun 5:5350. DOI: https://doi.org/10.1038/ncomms6350
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Fonty G, Lehours AC. 2011. Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832-847. DOI: https://doi.org/10.1016/j.resmic.2011.06.004
Campbell SD, Chow-Fraser P. 2017. Models to predict total phosphorus concentrations in coastal embayments of eastern Georgian Bay, Lake Huron. J Great Lakes Res 43:274-283.
DelSontro T, del Giorgio PA, Prairie YT. 2018. No longer a paradox: The interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21:1073-1087. DOI: https://doi.org/10.1007/s10021-017-0205-1
Donis D, Flury S, Stockli A, Spangenberg JE, Vachon D, McGinnis DF. 2017. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat Commun 8:1661. DOI: https://doi.org/10.1038/s41467-017-01648-4
Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Röckmann T, et al. 2015. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277-283. DOI: https://doi.org/10.1021/es503663z
Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. P Natl Acad Sci USA 113:12792-12796. DOI: https://doi.org/10.1073/pnas.1609534113
Fernández E J, Peeters F, Hofmann H, 2016. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH₄ in the open surface water of lakes. J Geophys Res Biogeosci 121:2717-2726. DOI: https://doi.org/10.1002/2016JG003586
Goto K, Taguchi S, Fukue Y, Ohta K, Watanabe H. 1977. Spectrophotometric determination of manganese with 1-(2-pyridylazo)-2-naphthol and a non-ionic surfactant. Talanta 24: 752-753. DOI: https://doi.org/10.1016/0039-9140(77)80206-3
Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW. 2011. Microbial methane production in the oxygenated water column of an oligotrophic lake. P Natl Acad Sci USA 108:19657-19661. DOI: https://doi.org/10.1073/pnas.1110716108
Günthel M, Donis D, Kirillin G, Ionescu D, Bizic M, McGinnis DF, et al. 2019. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat Commun 10:5497. DOI: https://doi.org/10.1038/s41467-019-13320-0
Günthel M, Klawonn I, Woodhouse J, Bižić M, Ionescu D, Ganzert L, et al. 2020. Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission. Limnol Oceanogr 65:2853-2865. DOI: https://doi.org/10.1002/lno.11557
Hartmann JF, Günthel M, Klintzsch T, Kirillin G, Grossart HP, Keppler F. 2020. High spatiotemporal dynamics of methane production and emission in oxic surface water. Environ Sci Technol 54:1451-1463. DOI: https://doi.org/10.1021/acs.est.9b03182
He Q, Yu L, Li J, He D, Cai X, Zhou S. 2019. Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction. Sci Total Environ 688:664-672. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.299
Hilt S, Grossart HP, McGinnis DF, Keppler F. 2022. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol Oceanogr 67:S76-S88. DOI: https://doi.org/10.1002/lno.12095
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. DOI: https://doi.org/10.1093/nar/gks808
Klintzsch T, Langer G, Nehrke G, Mohrholz V, Paul A, Hornick T, et al. 2020. Methane production by three widespread marine phytoplankton species: Release rates, precursor compounds, and potential relevance for the environment. Biogeosciences 17:5163-5180. DOI: https://doi.org/10.5194/bg-2019-245
Krom MD. 1980. Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105: 305-316. DOI: https://doi.org/10.1039/an9800500305
Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F, 2016. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 13:3163-3174. DOI: https://doi.org/10.5194/bg-13-3163-2016
Lewis CFM, Karrow PF, Blasco SM, McCarthy FMG, King JW, Moore TC Jr, Rea DK. 2008. Evolution of lakes in the Huron basin: Deglaciation to present. Aquat Ecosyst Health Manag 11:127-136. DOI: https://doi.org/10.1080/14634980802095263
León-Palmero E, Contreras-Ruiz A, Sierra A, Morales-Baquero R, Reche I. 2020. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs. Biogeosciences 17:3223-3245. DOI: https://doi.org/10.5194/bg-17-3223-2020
McCarthy F, McAndrews J. 2012. Early Holocene drought in the Laurentian Great Lakes basin caused hydrologic closure of Georgian Bay. J Paleolimnol 47:411-428. DOI: https://doi.org/10.1007/s10933-010-9410-z
McIntosh JC, Grasby SE, Hamilton SM, Osborn SG. 2014. Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Appl Geochem 50:37-52. DOI: https://doi.org/10.1016/j.apgeochem.2014.08.001
Mori K, Iino T, Suzuki K, Yamaguchi K, Kamagata Y. 2012. Aceticlastic and NaCl-requiring methanogen Methanosaeta pelagica sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 78:3416-3423. DOI: https://doi.org/10.1128/AEM.07484-11
Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5
Nims RW, Darbyshire JF, Saavedra JE, Christodoulou D, Hanbauer I, Cox GW. 1995. Colorimetric methods for the determination of nitric oxide concentration in neutral aqueous solutions. Methods 7: 48-54. DOI: https://doi.org/10.1006/meth.1995.1007
Ordonez C, DelSontro T, Langenegger T, Donis D, Suarez EL, McGinnis DF. 2023. Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. Nat Commun 14:2165. DOI: https://doi.org/10.1038/s41467-023-37861-7
Patel L, Singh R, Thottathil SD. 2024. Contribution of photosynthesis-driven oxic methane production to the methane cycling of a tropical river network. ACS EST Water 4:2836-2847. DOI: https://doi.org/10.1021/acsestwater.3c00812
Repeta DJ, Ferron S, Sosa OA, Johnson CG, Repeta LD, Acker M, et al. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci 9:884-887. DOI: https://doi.org/10.1038/ngeo2837
Rowe JS. 1972. Forest regions of Canada. Can For Serv Dep Environ. Available from: http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/24040.pdf
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, et al. 2020. The Global Methane Budget 2000-2017. Earth Syst Sci Data 12:1561–1623. DOI: https://doi.org/10.5194/essd-12-1561-2020
Scranton MI, Brewer PG. 1977. Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic. Deep Sea Res 24:127-138. DOI: https://doi.org/10.1016/0146-6291(77)90548-3
Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W. 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:1536-1544. DOI: https://doi.org/10.4319/lo.2011.56.4.1536
Schagerl M, Künzl G. 2007. Chlorophyll a extraction from freshwater algae - a reevaluation. Biologia 62:270-275. DOI: https://doi.org/10.2478/s11756-007-0048-x
Stumm W, Morgan JJ. 1995. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. J. Wiley & Sons, New York.
Su G, Zopfi J, Yao H, Steinle L, Niemann H, Lehmann MF. 2020. Manganese/iron‐supported sulfate‐dependent anaerobic oxidation of methane by archaea in lake sediments. Limnol Oceanogr 65:863-875. DOI: https://doi.org/10.1002/lno.11354
Su G, Zopfi J, Niemann H, Lehmann MF. 2022. Multiple groups of methanotrophic bacteria mediate methane oxidation in anoxic lake sediments. Front Microbiol 13:864630. DOI: https://doi.org/10.3389/fmicb.2022.864630
Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart HP. 2014. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr 59:275-284. DOI: https://doi.org/10.4319/lo.2014.59.1.0275
Tang KW, McGinnis DF, Ionescu D, Grossart HP. 2016. Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227-233. DOI: https://doi.org/10.1021/acs.estlett.6b00150
US Environmental Protection Agency (EPA). 2002. Method RSKSOP-175: Determination of Henry’s Law Constants for Volatile Organic Compounds in Water. EPA/600/R-02/004.
Verschoor MJ, Powe CR, McQuay E, Schiff SL, Venkiteswaran JJ, Li J, et al. 2017. Internal iron loading and warm temperatures are preconditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Can J Fish Aquat Sci 74:1439-1453. DOI: https://doi.org/10.1139/cjfas-2016-0377
Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785-790. DOI: https://doi.org/10.1016/S0883-2927(99)00097-9
Wang Q, Dore JE, McDermott TR. 2017. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ Microbiol 19:2366-2378. DOI: https://doi.org/10.1111/1462-2920.13747
Wang Q, Alowaifeer A, Kerner P, Balasubramanian N, Patterson A, Christian W, et al. 2021. Aerobic bacterial methane synthesis. P Natl Acad Sci USA 118:e2019229118. DOI: https://doi.org/10.1073/pnas.2019229118
Wilhelm, E., Battino, R. and Wilcock, R. 1977. Low pressure solubility of gases in liquid water. Chem Rev 77:219-261. DOI: https://doi.org/10.1021/cr60306a003
Xun F, Feng M, Zhao C, Luo W, Han X, Ci Z, et al. 2025. Epilimnetic oligotrophication increases contribution of oxic methane production to atmospheric methane flux from stratified lakes. Water Res 268:122602. DOI: https://doi.org/10.1016/j.watres.2024.122602
Yao M, Henny C, Maresca JA, 2016. Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol 82:6994-7003. DOI: https://doi.org/10.1128/AEM.02399-16
Zastepa A, Miller TR, Watson LC, Kling H, Watson SB. 2021. Toxins and other bioactive metabolites in deep chlorophyll layers containing the cyanobacteria Planktothrix cf. isothrix in two Georgian Bay embayments, Lake Huron. Toxins 13:445. DOI: https://doi.org/10.3390/toxins13070445
Zhu B, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF. 2012. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria. App Environ Microbiol 78:8657-8665. DOI: https://doi.org/10.1128/AEM.02102-12

Edited by

Cristiana Callieri, CNR-IRSA Water Research Institute, Verbania-Pallanza, Italy

Supporting Agencies

NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Grant

How to Cite



“Biogeochemical Drivers of Methane Dynamics in the Water Column of Georgian Bay’s Embayment, Lake Huron”. 2025. Journal of Limnology 84 (September). https://doi.org/10.4081/jlimnol.2025.2215.