Temporal changes in nutrients in a deep oligomictic lake: the role of external loads versus climate change

Submitted: 4 August 2021
Accepted: 15 November 2021
Published: 25 November 2021
Abstract Views: 1212
PDF: 312
Supplementary: 50
HTML: 45
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The impact of climate change on stratification and mixing patterns has important effects on nutrient availability and plankton dynamics in deep lakes. We demonstrate this in a long-term study of Lake Maggiore, a deep oligomictic lake located in the subalpine lake district in Northern Italy. Studies on physical, chemical and biological features of the lake have been performed continuously since the 1980s. The lake recovered from eutrophication in response to a reduction of catchment nutrient loads and reached a stable oligotrophic status by the end of the 1990s, with average total phosphorus concentrations in the water column around 10 µg L-1. However, both reactive and total phosphorus have slightly increased since 2010, leading to a shift in the lake trophic state towards mesotrophy. The increase in phosphorus has been limited to the hypolimnetic layers, concentrations being fairly stable or decreasing in the epilimnion. Reactive silica also progressively increased in the hypolimnion, while nitrate and total nitrogen concentrations have steadily decreased in both deep and surface layers, especially in the summer period. These changes were assessed in relation to catchment loads, atmospheric deposition and climate-related variations in stratification and mixing patterns and in nutrient retention. Long-term changes in primary production, represented by chlorophyll levels, and biovolume of the main algal groups were also considered. During the eutrophication period and until the 1990s, in-lake phosphorus concentrations were tightly related to external loads; successively, phosphorus and its vertical distribution up the water column became more controlled by internal processes, in particular by stratification and mixing regime. An increase of thermal stability and a reduced frequency and intensity of deep mixing events has fostered oxygen depletion and phosphorus and silica accumulation in the hypolimnion. Another consequence of reduced deep mixing events, has been a reduction in nutrient replenishment of the upper layers at spring mixing. External loads are still the main driver of change for nitrogen compounds: the decrease in the atmospheric load of nitrogen that occurred in the Lake Maggiore area over the last decade, as an effect of reduced nitrogen emissions, has caused decreasing concentration of inorganic nitrogen in the lake. However, the phytoplankton community changes observed might also play a role in nitrogen dynamics, particularly in the nitrate minima observed during summer in recent years.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M, 2009. Lakes as sentinels of climate change. Limnol. Oceanogr. 54:2283-2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Ambrosetti W, Barbanti L, 1999. Deep water warming in lakes: an indicator of climatic change. J. Limnol. 58:1-9. DOI: https://doi.org/10.4081/jlimnol.1999.1
Ambrosetti W, Barbanti L, Carrara EA, 2010. Mechanisms of hypolimnion erosion in a deep lake (Lago Maggiore, N. Italy). J. Limnol. 69:3-14. DOI: https://doi.org/10.4081/jlimnol.2010.3
APAT, IRSA-CNR, 2003. [Metodi analitici per le acque].[in Italian]. APAT Manuali e Linee Guida 29; 2003.
APHA, AWWA, WEF, 2012. Standard Methods for the examination of water and wastewater. 22nd Edition. American Public Health Association, Washington.
Bergström A-K, Jansson M, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12:635-643. DOI: https://doi.org/10.1111/j.1365-2486.2006.01129.x
Blomqvist P, Pettersson A, Hyenstrand P, 1994. Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen- fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132:141-164. DOI: https://doi.org/10.1127/archiv-hydrobiol/132/1994/141
Bresciani M, Cazzaniga I, Austoni M, Sforzi T, Buzzi F, Morabito G, Giardino C, 2018. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2 and Landsat-8. Hydrobiologia 824:197-214. DOI: https://doi.org/10.1007/s10750-017-3462-2
Callieri C, Bertoni R, Contesini M, Bertoni F, 2014. Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms.” PLoS One 9:e109526. DOI: https://doi.org/10.1371/journal.pone.0109526
Carvalho L, McDonald C, de Hoyos C, Mischke U, Phillips G, Borics G, Poikane S, Skjelbred B, Solheim AL, Van Wichelen J, Cardoso AC, 2013. Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control. J. Appl. Ecol. 50:315-323. DOI: https://doi.org/10.1111/1365-2664.12059
Cohen AS, Gergurich EL, Kraemer BM, McGlue MM, McIntyre PB, Russell JM, Simmons JD, Swarzenski PW, 2016. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. P. Natl. Acad. Sci. USA 113:9563-9568. DOI: https://doi.org/10.1073/pnas.1603237113
David MB, Wall LG, Royer TV, Tank JL, 2006. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecol. Appl. 16:2177-90. DOI: https://doi.org/10.1890/1051-0761(2006)016[2177:DATNBO]2.0.CO;2
Dillon PJ, Rigler FH, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19:767-773. DOI: https://doi.org/10.4319/lo.1974.19.5.0767
Domingues RB, Barbosa AB, Sommer U, Galvao HM, 2011. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat. Sci. 73:331-343. DOI: https://doi.org/10.1007/s00027-011-0180-0
Donald DB, Bogard MJ, Finlay K, Leavitt PR, 2011. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol. Oceanogr. 56:2161-2175. DOI: https://doi.org/10.4319/lo.2011.56.6.2161
Dortch Q, 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecol. Prog. Ser. 61:83-201. DOI: https://doi.org/10.3354/meps061183
European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. 2000: L327/1. European Commission, Brussels.
Egge JK, Aksnes DL, 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83:281-289. DOI: https://doi.org/10.3354/meps083281
Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10:1135-1142. DOI: https://doi.org/10.1111/j.1461-0248.2007.01113.x
Fenocchi A, Rogora M, Sibilla S, Dresti C, 2017. Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica 63:42-45. DOI: https://doi.org/10.1016/j.limno.2017.01.006
Fenocchi A, Rogora M, Sibilla S, Ciampittiello M, Dresti C, 2018. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim. Dynam. 51:3521-3536. DOI: https://doi.org/10.1007/s00382-018-4094-6
Fenocchi A, Rogora M, Marchetto A, Sibilla S, Dresti C, 2020. Model simulations of the ecological dynamics induced by climate and nutrient load changes for deep subalpine Lake Maggiore (Italy/Switzerland). J. Limnol. 79:1963. DOI: https://doi.org/10.4081/jlimnol.2020.1963
Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen enriched conditions. Limnol. Oceanogr. 61:165-197. DOI: https://doi.org/10.1002/lno.10203
Goldman CR, Jassby A, 1990. Spring mixing depth as a determinant of annual primary production in lakes, p. 125-132. In: M.M. Tilzer and C. Serruya (eds.), Large lakes. Ecological structure and function. Springer, New York. DOI: https://doi.org/10.1007/978-3-642-84077-7_6
Hayes NM, Vanni MJ, Horgan MJ, Renwick WH, 2015. Climate and land use interactively affect lake phytoplankton nutrient limitation status. Ecology 96:392-402. DOI: https://doi.org/10.1890/13-1840.1
Hirsch RM, Slack JR, Smith RA, 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18:107-121. DOI: https://doi.org/10.1029/WR018i001p00107
Holzner C, Aeschbach W, Simona M, Veronesi M, Imboden D, Kipfer R, 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnol. Oceanogr. 54:1113-1124. DOI: https://doi.org/10.4319/lo.2009.54.4.1113
Hutchinson GE, 1973. Eutrophication. Am. Sci. 61:269-279.
Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RL, Arvola L, Chandra S, DeGasperi CL, Diemer L, Dunalska J, Erina O, Flaim G, Grossart H-P, Hambright KD, Hein C, Hejzlar J, Janus LL, Jenny J-P, Jones JR, Knoll LB, Leoni B, Mackay E, Matsuzaki S-I S, McBride C, Müller-Navarra DC, Paterson AM, Pierson D, Rogora M, Rusak JA, Sadro S, Saulnier-Talbot E, Schmid M, Sommaruga R, Thiery W, Verburg P, Weathers KC, Weyhenmeyer GA, Yokota K, Rose KC, 2021. Widespread deoxygenation of temperate lakes. Nature 594:66-70. DOI: https://doi.org/10.1038/s41586-021-03550-y
Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EH, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M, 2005. Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 50:1747-1771. DOI: https://doi.org/10.1111/j.1365-2427.2005.01415.x
Kilham P, 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16:10-1. DOI: https://doi.org/10.4319/lo.1971.16.1.0010
Leoni B, Garibaldi L, Gulati RD, 2014. How does interannual trophic variability caused by vertical water mixing affect reproduction and population density of the Daphnia longispina group in Lake Iseo, a deep stratified lake in Italy? Inland Waters 4:193-203. DOI: https://doi.org/10.5268/IW-4.2.663
Lepori F, Bartosiewicz M, Simona M, Veronesi M, 2018. Effects of winter weather and mixing regime on the restoration of a deep perialpine lake (Lake Lugano, Switzerland and Italy). Hydrobiologia 824:229-242. DOI: https://doi.org/10.1007/s10750-018-3575-2
Lepori F, Capelli C, 2021. Effects of phosphorus control on primary productivity and deep-water oxygenation: insights from Lake Lugano (Switzerland and Italy). Hydrobiologia 848:613-629. DOI: https://doi.org/10.1007/s10750-020-04467-9
Levasseur M, Thompson PA, Harrison PJ, 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595. DOI: https://doi.org/10.1111/j.0022-3646.1993.00587.x
Litchman E, Klausmeier C, Schofield O, Falkowski P, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10:1170-1181. DOI: https://doi.org/10.1111/j.1461-0248.2007.01117.x
Maberly SC, Pitt JA, Davies PS, Carvalho L, 2020. Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 10:159-172. DOI: https://doi.org/10.1080/20442041.2020.1714384
Marchetto A, Rogora M, Arisci S, 2013 Trend analysis of atmospheric deposition data: a comparison of statistical approaches. Atmos. Environ. 64:95-102. DOI: https://doi.org/10.1016/j.atmosenv.2012.08.020
McCarthy M, James R, Chen Y, East T, Gardner W, 2009. Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical lakes Okeechobee (Florida, USA) and Taihu (China). Limnology 10:215-227. DOI: https://doi.org/10.1007/s10201-009-0277-5
Morabito G, Oggioni A, Austoni M, 2012. Resource ratio and human impact: How diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698:47-60. DOI: https://doi.org/10.1007/s10750-012-1094-0
Morabito G, Rogora M, Austoni M, Ciampittiello M, 2018. Could the extreme meteorological events in Lake Maggiore watershed determine a climate-driven eutrophication process? Hydrobiologia 824:163-175. DOI: https://doi.org/10.1007/s10750-018-3549-4
Mosello R, Calderoni A, Marchetto A, Brizzio MC, Rogora M, Passera S, GA Tartari, 2001. Nitrogen budget of Lago Maggiore: the relative importance of atmospheric deposition and catchment sources. J. Limnol. 60:27-40. DOI: https://doi.org/10.4081/jlimnol.2001.27
Nizzoli D, Bartoli M, Azzoni R, Longhi D, Castaldelli G, Viaroli P, 2018. Denitrification in a meromictic lake and its relevance to nitrogen flows within a moderately impacted forested catchment. Biogeochemistry 137:143-161. DOI: https://doi.org/10.1007/s10533-017-0407-9
North RP, North RL, Livingstone DM, Köster O, Kipfer R, 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20:811-823. DOI: https://doi.org/10.1111/gcb.12371
OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris: 154 pp.
Poxleitner M, Trommer G, Lorenz P, Stibor H, 2016. The effect of increased nitrogen load on phytoplankton in a phosphorus-limited lake. Freshwater Biol. 61:1966-1980. DOI: https://doi.org/10.1111/fwb.12829
Radbourne AD, Elliott JA, Maberly SC, Ryves DB, Anderson NJ, 2019. The impacts of changing nutrient load and climate on a deep, eutrophic, monomictic lake. Freshwater Biol. 64:1169-1182. DOI: https://doi.org/10.1111/fwb.13293
Rogora M, Arisci S, Marchetto A, 2012. The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. Sci. Total Environ. 417-418:214-223. DOI: https://doi.org/10.1016/j.scitotenv.2011.12.067
Rogora M, Buzzi F, Dresti C, Leoni B, Patelli M, Lepori F, Mosello R, Salmaso N, 2018. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824:33-50. DOI: https://doi.org/10.1007/s10750-018-3623-y
Rogora M, Colombo L, Marchetto A, Mosello R, Steingruber S, 2016. Temporal and spatial patterns in the chemistry of wet deposition in Southern Alps. Atmos. Envir. 146:44-54. DOI: https://doi.org/10.1016/j.atmosenv.2016.06.025
Rogora M, Giacomotti P, Mosello R, Orrù A, Tartari GA, 2019. [Evoluzione stagionale e a lungo termine delle caratteristiche chimiche del Lago Maggiore e bilancio dei nutrienti a lago (azoto e fosforo)], p. 31-54. In: CNR Istituto di Ricerca sulle Acque, Sede di Verbania (eds.), [Ricerche sull'evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2016-2018. Campagna 2018 e rapporto triennale 2016-18].[Book in Italian]. Commissione Internazionale per la protezione delle acque italo-svizzere.
Rogora M, Mosello R, Calderoni A, Barbieri A, 2006. Nitrogen budget of a subalpine lake in North-Western Italy: the role of atmospheric input in the upward trend of nitrogen concentrations. Verh. Internat. Verein. Limnol. 29:2027-2030. DOI: https://doi.org/10.1080/03680770.2006.11903045
Ruggiu D, Morabito G, Panzani P, Pugnetti A, 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 369:243-257. DOI: https://doi.org/10.1007/978-94-017-2668-9_21
Saidi H, Ciampittiello M, Dresti C, Ghiglieri G, 2013. The climatic characteristics of extreme precipitations for short-term intervals in the watershed of Lake Maggiore. Theor. Appl. Climatol. 113:1-15. DOI: https://doi.org/10.1007/s00704-012-0768-x
Salmaso N, Boscaini A, Capelli C, Cerasino L, 2018. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three decades study in Lake Garda. Hydrobiologia 824:177-195. DOI: https://doi.org/10.1007/s10750-017-3402-1
Salmaso N, Buzzi F, Capelli C, Cerasino L, Leoni B, Lepori F, Rogora M, 2020. Responses to local and global stressors in the large southern perialpine lakes: Present status and challenges for research and management. J. Great Lakes Res. 46:752-766. DOI: https://doi.org/10.1016/j.jglr.2020.01.017
Salmaso N, Mosello R, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Adv. Oceanogr. Limnol. 1:29-66. DOI: https://doi.org/10.1080/19475721003735773
Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. P. Natl. Acad. Sci. USA 105:11254-11258. DOI: https://doi.org/10.1073/pnas.0805108105
Schwefel R, Müller B, Boisgontier H, Wüest A, 2019. Global warming affects nutrient upwelling in deep lakes. Aquat. Sci. 81:50. DOI: https://doi.org/10.1007/s00027-019-0637-0
Scibona A, Nizzoli D, Cristini D, Longhi D, Bolpagni R, Viaroli P, 2019. Silica storage, fluxes, and nutrient stoichiometry in different benthic primary producer communities in the littoral zone of a deep subalpine lake (Lake Iseo, Italy). Water 11:2140. DOI: https://doi.org/10.3390/w11102140
Scott AJ, Knott M, 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507-512. DOI: https://doi.org/10.2307/2529204
Søndergaard M, 2007. Nutrient dynamics in lakes - with emphasis on phosphorus, sediment and lake restorations. DSc Dissertation, University of Aarhus, Denmark.
Søndergaard M, Lauridsen TL, Johansson LS, Jeppesen E, 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795:35-48. DOI: https://doi.org/10.1007/s10750-017-3110-x
Sonzogni WC, Monteith TJ, Bach WN, Hughes VG, 1978. United States Great Lakes tributary loadings. International Reference Group on Great Lakes Pollution from Land Use Activities. International Joint Commission: 187 pp.
Stockwell JD, Doubek JP, Adrian R, Anneville O, Carvalho L, De Senerpont Domis LN, Dur G, Frassl MA, Grossart HP, Ibelings BW, Lajeunesse MJ, Lewandowska AM, Llames ME, Matsuzaki SS, Nodine ER, Nõges P, Patil VP, Pomati F, Rinke K, Rudstam LG, Rusak JA, Salmaso N, Seltmann CT, Straile D, Thackeray SJ, Thiery W, Urrutia-Cordero P, Venail P, Verburg P, Woolway IR, Zohary T, Andersen MR, Bhattacharya R, Hejzlar J, Janatian N, Kpodonu ATNK, Williamson TJ, Wilson H L, 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26:2756- 2784. DOI: https://doi.org/10.1111/gcb.15033
Tanentzap AJ, Morabito G, Volta P, Rogora M, Yan ND, Manca M, 2020. Climate warming restructures an aquatic food web over 28 years. Glob. Change Biol. 26:6852-6866. DOI: https://doi.org/10.1111/gcb.15347
Tapolczai K, Anneville O, Padisák J, Salmaso N, Morabito G, Zohary T, Tadonléké RD, Rimet F, 2015. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745:17-29. DOI: https://doi.org/10.1007/s10750-014-2086-z
Veraart AJ, de Klein JJM, Scheffer M. 2011. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS One 6:e18508. DOI: https://doi.org/10.1371/journal.pone.0018508
Verburg P, Hecky RE, Kling H, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505-507. DOI: https://doi.org/10.1126/science.1084846
Viaroli P, Azzoni R, Bartoli M, Iacumin Paola, Longhi D, Mosello R, Rogora M, Rossetti G, Salmaso N, Nizzoli D, 2018. Persistence of meromixis and its effects on redox conditions and trophic status in Lake Idro (Southern Alps, Italy). Hydrobiologia 824:51-69. DOI: https://doi.org/10.1007/s10750-018-3767-9
Yang Y, Colom W, Pierson D, Pettersson K, 2016. Water column stability and summer phytoplankton dynamics in a temperate lake (Lake Erken, Sweden). Inland Waters 6:4, 499-508. DOI: https://doi.org/10.1080/IW-6.4.874
Yankova, Y, Neuenschwander S, Köster O, Posch T, 2017. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep. 7:13770. DOI: https://doi.org/10.1038/s41598-017-13159-9
Zohary T, Alster A, Hadas O, Obertegger U. 2019. There to stay: invasive filamentous green alga Mougeotia in Lake Kinneret, Israel. Hydrobiologia 831:87-100. DOI: https://doi.org/10.1007/s10750-018-3522-2
Zuur AF, Ieno EN, Smith GM, 2007. Analysing ecological data. Springer, New York: 672 pp. DOI: https://doi.org/10.1007/978-0-387-45972-1

How to Cite

Rogora, Michela, Martina Austoni, Rossana Caroni, Paola Giacomotti, Lyudmila Kamburska, Aldo Marchetto, Rosario Mosello, Arianna Orru’, Gabriele Tartari, and Claudia Dresti. 2021. “Temporal Changes in Nutrients in a Deep Oligomictic Lake: the Role of External Loads <em>versus</em> Climate Change”. Journal of Limnology 80 (3). https://doi.org/10.4081/jlimnol.2021.2051.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo