Representative monitoring of the calcifying alga Phacotus lenticularis (Chlamydophyceae) in lentic ecosystems

Representative monitoring of calcifying algae

Submitted: 28 October 2019
Accepted: 15 December 2019
Published: 30 January 2020
Abstract Views: 664
PDF: 359
HTML: 12
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The biogenic carbonate precipitation by the freshwater alga Phacotus lenticularis may play a role in long-term carbon (C) fixation that has not yet been quantified. This is partly due to the absence of a standardised methodology to representatively sample and assess the cell density and sedimentation of P. lenticularis in lakes. The objective of the present study was to define an adequate sampling methodology taking into account the spatiotemporal variation of P. lenticularis as well as the sedimentation and dissolution of calcite shells. Simultaneous measurements in three different lake sub-basins of Lake Grosser Ostersee, Germany, showed that the spatial cell density of P. lenticularis was similar in each sub-basin. At all sites, the vertical P. lenticularis cell density maxima corresponded with the slowly downshifting thermocline from depths of 2 to 6 m. During the entire growth period, composite samples from 0 to 7 m included 89% of the total P. lenticularis population. Lake bathymetry, as well as external factors like wind exposure, did not appear to affect the abundance of these calcifying algae. Sediment traps at a depth below the thermocline (at 7 m) and 1 m above the lake bottom recorded sedimentation rates of P. lenticularis shell halves (sh) between 1.1×106 and 1.1×108 sh m−2 d−1, while mean cell concentrations in the water column were between 1.1×108 and 1.7×109 shells per m². Sinking velocity ranged between 3 and 4 m d−1. Sediment from traps installed at a depth of 7 m did not reflect mean shell concentrations in the water column above. Dissolution of carbonates reduced the number of shells in sediment traps at the lake bottom and during the storage of samples. A laboratory experiment showed that even distilled water used for dilution during microscopic analysis led to dissolution of P. lenticularis shells. In conclusion, combined sampling of P. lenticularis from open water and sediment traps close to the lake bottom delivers a most representative assessment of biogenic carbonate precipitation. Due to dissolution effects, high temporal resolution along with appropriate sample preservation are crucial, whereas spatial representativeness was already achieved with low number of sampling sites per lake.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Bavarian Environment Agency, 2016. [Planktondaten für "Phacotus lenticularis" in den Gewässern Abtsdorfer See, Altmuehlsee, Grosser Ostersee, Hopfensee, Igelsbachsee, Waginger See].[Article in German]. Available from: www.lfu.bayer.de.
Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F, Christaki U, Corbière A, Durand I, Ebersbach F, Fuda J-L, Garcia N, Gerringa L, Griffiths B, Guigue C, Guillerm C, Jacquet S, Jeandel C, Laan P, Lefèvre D, Lo Monaco C, Malits A, Mosseri J, Obernosterer I, Park Y-H, Picheral M, Pondaven P, Remenyi T, Sandroni V, Sarthou G, Savoye N, Scouarnec L, Souhaut M, Thuiller D, Timmermans K, Trull T, Uitz J, van Beek P, Veldhuis M, Vincent D, Viollier E, Vong L, Wagener T, 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070. DOI: https://doi.org/10.1038/nature05700
Bloesch J, Burns NM, 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrologie 42:15-55. DOI: https://doi.org/10.1007/BF02502505
Bluszcz P, Kirilova E, Lotter AF, Ohlendorf C, Zolitschka B, 2008. Global Radiation and Onset of Stratification as Forcing Factors of Seasonal Carbonate and Organic Matter Flux Dynamics in a Hypertrophic Hardwater Lake (Sacrower See, Northeastern Germany). Aquat. Geochem. 14:73-98. DOI: https://doi.org/10.1007/s10498-008-9026-3
Bluszcz P, Lücke A, Ohlendorf C, Zolitschka B, 2009. Seasonal dynamics of stable isotopes and element ratios in authigenic calcites during their precipitation and dissolution, Sacrower See (northeastern Germany). J. Limnol. 68:257. DOI: https://doi.org/10.4081/jlimnol.2009.257
Bollmann J, Brabec B, Cortés MY, Geisen M, 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method). Marine Micropaleontol. 38:29-38. DOI: https://doi.org/10.1016/S0377-8398(99)00032-8
Bordiga M, Bartol M, Henderiks J, 2015. Absolute nannofossil abundance estimates. Revue de Micropaléontologie 58:155-165. DOI: https://doi.org/10.1016/j.revmic.2015.05.002
Cairns Jr J, Smith EP, 1993. The statistical validity of biomonitoring data. LEWIS PUBLISHERS, BOCA RATON, FL(USA). 1993.
Cărăuş I, 2002. Algae of Romania. Studii şi Cercetări, Universitatea Bacau, Biologie 7:1-694.
DIN Technical Committee Water analysis, 2015. Water quality - Guidance on quantitative and qualitative sampling of phytoplankton from inland waters. 230. Beuth.
Giering B von, Krienitz L, Casper SJ, Peschke T, Raidt H, 1990. [LM-oder REM-Beobachtungen an Phacotus sphaericus (Wislouch) Giering nov. stat.(Chlamydophyceae, Phacotaceae)].[Article in German]. Archiv für Protistenkunde 138: 323–332. DOI: https://doi.org/10.1016/S0003-9365(11)80040-0
Grimminger H, 1982. [Verzeichnis der Seen in Bayern mit einem Kartenteil. Tl. 1 Text. Tl. 2. Karten].[Article in German]. Bayerisches Landesamt für Wasserwirtschaft.
Gruenert U, Benda J, Müller C, Raeder U, 2016. Vertical segregation of two cell-cycle phases of the calcifying freshwater phytoflagellate Phacotus lenticularis (Chlorophyta). J. Plankton Res. 38:94-105. DOI: https://doi.org/10.1093/plankt/fbv093
Gruenert U, Raeder U, 2014. Growth responses of the calcite-loricated freshwater phytoflagellate Phacotus lenticularis (Chlorophyta) to the CaCO3 saturation state and meteorological changes. J. Plankton Res. 36:630-640. DOI: https://doi.org/10.1093/plankt/fbu006
Hepperle D, Krienitz L, 1996. The extracellular calcification of zoospores of Phacotus lenticularis (Chlorophyta, Chlamydomonadales). Eur. J. Phycol. 31:11-21. DOI: https://doi.org/10.1080/09670269600651141
Hepperle, D, Krienitz, L 1997. Phacotus lenticularis (Chlamydomonadales, Phacotaceae) zoospores require external supersaturation of calcium carbonate for calcification in culture. J. Phycol. 33: 415-424. DOI: https://doi.org/10.1111/j.0022-3646.1997.00415.x
John DM, Whitton BA, Brook AJ, 2011. Freshwater algal flora of the British Isles. Cambridge University Press.
Kelly M, 1998. Quality Assurance for Phytoplankton Data. Durham.
Kelts K, Hsü KJ, 1978. Freshwater Carbonate Sedimentation, p. 295-323. In: A. Lerman (ed.), Lakes. Springer New York, New York, NY. DOI: https://doi.org/10.1007/978-1-4757-1152-3_9
Koch C, Young JR, 2007. A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples. J. Nannoplankton Res. 29:67-69.
Koschel R, Raidt H, 1988. [Morphologische Merkmale der Phacotus-Hüllen in Hartwasserseen der Mecklenburger Seenplatte]. [Article in German]. Limnologica 19: 13–25.
Kozerski H-P, Leuschner K, 1999. Plate sediment traps for slowly moving waters. Water Res. 33:2913-2922. DOI: https://doi.org/10.1016/S0043-1354(98)00510-7
Krienitz L, Koschel, Giering, B., Casper SJ, Hepperle D, 1993. Phenomenology of organismic calcite precipitation by Phacotus in hardwater lakes and ponds of northeastern Germany. Verh. Internat. Verein. Limnol. 170-174. DOI: https://doi.org/10.1080/03680770.1992.11900084
Lagerheim G, 1902. [Untersuchungen über fossile Algen, I, II.].[Article in German]. Geologiska Föreningen i Stockholm Förhandlingar 24:475-500. DOI: https://doi.org/10.1080/11035890209449975
Lenz S, Dubois N, Geist J, Raeder U, (2019). Phacotus lenticularis content in carbonate sediments and epilimnion in four German hard water lakes. (submitted) DOI: https://doi.org/10.4081/jlimnol.2020.1945
Lenz S, Gruenert U, Geist J, Stiefel M, Lentz M, Raeder U, 2018. Calcite production by the calcifying green alga Phacotus lenticularis. J. Limnol. 77. DOI: https://doi.org/10.4081/jlimnol.2018.1692
Menezes M, 2010. Chlorophyceae. In: R.C. Forzza, J.F. Baumgratz, C.d.M. Bicudo, A. Carvalho Junior, A. Costa, D.P. Costa, M.J. Hopkins, P. Leitman, L.G. Lohmann and L.C. Maia (eds.), Catálogo das plantas e fungos do Brasil. v. 1 e 2.
Mischke U, Nixdorf B (eds.), 2008. [Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie].[Article in German]. Brandenburgische Techn. Univ., Fak. Umweltwiss. und Verfahrenstechnik, Cottbus:263 S.
Morris PJ, Charette MA, 2013. A synthesis of upper ocean carbon and dissolved iron budgets for Southern Ocean natural iron fertilisation studies. Deep Sea Research Part II: Topical Studies in Oceanography 90: 147–157. DOI: https://doi.org/10.1016/j.dsr2.2013.02.001
Müller G, Oti M, 1981. The occurrence of calcified planktonic green algae in freshwater carbonates. Sedimentology 28:897-902. DOI: https://doi.org/10.1111/j.1365-3091.1981.tb01952.x
Ohlendorf C, Sturm M, 2001. Precipitation and Dissolution of Calcite in a Swiss High Alpine Lake. Arct. Antarct. Alp. Res. 33:410. DOI: https://doi.org/10.2307/1552550
Saarso M, 1995. Vertical variability of particulate flux in the Baltic Sea. NurmiPrint, Nurmijarvi:168-183.
Sánchez, J. C., Cobelas, M. Á., Sanjurjo, M. A., 1998. Lista florística y bibliográfica de los clorófitos (Chlorophyta) de la Península Ibérica, Islas Baleares e Islas Canarias, No. 14. Asociación Española de Limnología.
Schlegel I, 2001. [Ökologische und molekularbiologische Charakterisierung von Populationen des kalzithüllentragenden Phytoflagellaten Phatotus (Chlorophyta)].[Article in German]. Berlin.
Schlegel I, Koschel R, Krienitz L, 1998. On the occurrence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state. Hydrobiologia 369-370:353-361. DOI: https://doi.org/10.1023/A:1017019925927
Schlegel I, Koschel R, Krienitz L, 2000. Phacotus lenticularis (Chlorophyta) population dynamics in both nature and culture. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 27:700-–703. DOI: https://doi.org/10.1080/03680770.1998.11901324
Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d'Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Berg GM, Croot P, Gonzalez S, Henjes J, Herndl GJ, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrüggen A, Wolf-Gladrow D, 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313-319. DOI: https://doi.org/10.1038/nature11229
Utermöhl H, 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. E. Schweizerbart'sche, Stuttgart: 38 pp. DOI: https://doi.org/10.1080/05384680.1958.11904091
van de Bogert MC, Bade DL, Carpenter SR, Cole JJ, Pace ML, Hanson PC, Langman OC, 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnol. Oceanogr. 57:1689-1700. DOI: https://doi.org/10.4319/lo.2012.57.6.1689
Wehr, J.D., Sheath, R.G., Kociolek P., 2001. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego.

Edited by

Cristiana Callieri, CNR-IRSA Verbania, Italy

Supporting Agencies

Bavarian State Ministry of the Environment and Consumer Protection, Project Nr. TLK10U-6627

How to Cite

Lenz, Sebastian, Uta Raeder, and Juergen Geist. 2020. “Representative Monitoring of the Calcifying Alga <em>Phacotus lenticularis</Em> (Chlamydophyceae) in Lentic Ecosystems: Representative Monitoring of Calcifying Algae”. Journal of Limnology 79 (2). https://doi.org/10.4081/jlimnol.2020.1946.

List of Cited By :

Crossref logo