Influence of submerged macrophytes on phosphorus in a eutrophic reservoir in a semiarid region

Influence of submerged macrophytes on phosphorus

Submitted: 13 July 2019
Accepted: 14 January 2020
Published: 3 February 2020
Abstract Views: 1515
PDF: 546
HTML: 57
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Phosphorus (P) is the main nutrient responsible for the harmful effects caused by the enrichment of aquatic systems, and submerged macrophytes play an important role in this process, since they can both remove and release this nutrient in environmental compartments. The present study aimed to evaluate the influence of submerged macrophytes on P in the water, sediment, and water-sediment interface in a eutrophic reservoir in a semiarid region and to evaluate the relationship between the concentration of this nutrient in macrophyte tissue and that available in the different compartments. Were performed ten collection campaigns, in three reservoir locations: at the entrance of the Paraíba River; in the intermediate area between the river entrance and the dam and at the dam. We observed a difference in the P concentration inside and outside macrophyte banks, and this difference was determined by the abundance and intensity of macrophyte growth and decomposition. In sites with extensive vegetation banks and where decomposition was more intense, macrophytes released P to the water-sediment interface and sediment compartments. By contrast, in sites with smaller vegetation banks and where macrophytes did not show reduced abundance, P was removed from these compartments. The entry of new water originating from river water transfer was an important modifying factor of the physical and chemical characteristics and macrophyte abundance. The zone where the river enters the reservoir was the area most affected by the water transfer. The macrophyte decomposition in this zone resulted in the highest P concentration in the water-sediment interface and sediment compartments, which demonstrates the importance of macrophytes in the fertilization of water bodies and, consequently, in the eutrophication process. In turn, in the dam zone, where the macrophyte banks were more stable and without large variations in abundance, P was removed from the compartments. A relationship between P in macrophyte tissue and that available in the environment was observed, particularly at the water-sediment interface, indicating that this compartment was the main P source for these plants, which demonstrated that these plants store higher amounts of P in nutrient-rich sediment and water, functioning as an indicator of the nutritional status of a reservoir.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G, 2013. Köppen’s climate classification map for Brazil. Meteo. Z. 22: 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
Angelstein S, Schubert H, 2008. Elodea nuttallii: uptake, translocation and release of phosphorus. Aquat. Bot. 3:208-216. DOI: https://doi.org/10.3354/ab00080
APHA, 2012. Standard methods for the examination of 457 water and wastewater. Washington DC: APHA - AWWA - WPCF. 19.
Araújo-Júnior RJ, 2009. [Evolução temporal dos níveis tróficos do açude Epitácio Pessoa, semi-árido Paraibano].[PhD Thesis in Portuguese]. Universidade Estadual da Paraíba.
Baldy V, Thiebaut G, Fernandez C, Sagova-Mareckova M, Korboulewsky N, Monnier Y, Tremolieres M, 2015. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: Biological responses throughout its phenological stage. PLoS One 10:1-17. DOI: https://doi.org/10.1371/journal.pone.0118844
Barbosa JEL, Medeiros ESF, Brasil J, Cordeiro RS, Crispim MCB, Silva GHG, 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol. Bras. 24:103-118. DOI: https://doi.org/10.1590/S2179-975X2012005000030
Barbosa VV, Barbosa JEL, Hepp LU, Santino MBC, Nery JF, 2017. Anaerobic decomposition of submerged macrophytes in semiarid aquatic systems under different trophic states, Paraíba State, Brazil. Afr. J. Biotechnol. 16:2258-2266. DOI: https://doi.org/10.5897/AJB2017.16146
Barko JW, Smat RM, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol. 10:229-238. DOI: https://doi.org/10.1111/j.1365-2427.1980.tb01198.x
Bianchini Junior, I, Cunha-Santino, MB, Ribeiro, JU, Penteado, DGB, 2014. Implication of anaerobic and aerobic decomposition of Eichhornia azurea (Sw.) Kunth. on the carbon cycling in a subtropical reservoir. Braz. J. Biol. 74:100-110. DOI: https://doi.org/10.1590/1519-6984.17912
Canfield DF, Shireman VJ, Colle DE, Halle, WT, Watkins II CR, Maceina MJ, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41:497-501. DOI: https://doi.org/10.1139/f84-059
Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8:559. DOI: https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Carpenter SR, Lodge DM, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341-370. DOI: https://doi.org/10.1016/0304-3770(86)90031-8
Carignan R, Kalff J, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207:987-989. DOI: https://doi.org/10.1126/science.207.4434.987
Chamier J, Schachtschneider K, Le Maitre DC, Ashton PJ, van Wilgen BW, 2012. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38:345-356. DOI: https://doi.org/10.4314/wsa.v38i2.19
Correll DL, 1998. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 27: 261. DOI: https://doi.org/10.2134/jeq1998.00472425002700020004x
Epskamp S, 2015. semPlot: Unified visualizations of structural equation models. Structural equation models. Available at: http://www.sachaepsamp.com/files/semPlot.pdf DOI: https://doi.org/10.1080/10705511.2014.937847
Feijoó C, García, ME, Momo F, Toja J, 2002. Nutrient absorption by the submerged macrophyte Egeria densa Planch.: Effect of ammonium and phosphorus availability in the water column on growth and nutrient uptake. Lirnnetica 21:103-104.
Finkler Ferreira T, Crossetti LO, Motta Marques DML, Cardoso L, Fragoso CR, van Nes EH, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69:142-154. DOI: https://doi.org/10.1016/j.limno.2017.12.003
Gabrielson JO, Perkins MA, Welch EB, 1984. The uptake, translocation and release of phosphorus by Elodea densa. Hydrobiologia 111:43-48. DOI: https://doi.org/10.1007/BF00007379
Heidbuchel P, Hussner A, 2019. Fragment type and water depth determine the regeneration and colonization success of submerged aquatic macrophytes. Aquat. Sci. 81:1-6. DOI: https://doi.org/10.1007/s00027-018-0603-2
Hilborn E, Beasley V, 2015. One health and cyanobacteria in freshwater systems: Animal illnesses and deaths are sentinel events for human health risks. Toxins 7:1374-1395. DOI: https://doi.org/10.3390/toxins7041374
Holmroos H, Horppila J, Niemistö J, Nurminen L, Hietanen S, 2014. Dynamics of dissolved nutrients among different macrophyte stands in a shallow lake. Limnology 16:31-39. DOI: https://doi.org/10.1007/s10201-014-0438-z
Horppila J, Nurminen L, 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res. 37: 468-4474. DOI: https://doi.org/10.1016/S0043-1354(03)00405-6
Huang J, Xu C, Ridoutt BG, Wang X, Ren P, 2017. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean Prod. 159:171-179. DOI: https://doi.org/10.1016/j.jclepro.2017.05.008
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM, 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16:471-483. DOI: https://doi.org/10.1038/s41579-018-0040-1
Human LRD, Snow GC, Adams JB, Bate GC, Yang S-C, 2015. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach. Estuar. Coast. Shelf Sci. 154:169-178. DOI: https://doi.org/10.1016/j.ecss.2015.01.001
Hupfer M, Dollan A, 2003. Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia 506-509:635-640. DOI: https://doi.org/10.1023/B:HYDR.0000008605.09957.07
Jespersen AM, Christoffersen K, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109:445-454.
Kuntz K, Heidbüchel P, Hussner A, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Ann. Limnol. - Int. J. Limnol. 50:155-162. DOI: https://doi.org/10.1051/limn/2014008
Lamers L, Schep S, Geurts J, Smolders A, 2012. [Erfenis fosfaatrijk verleden: Helder water met woekerende waterplanten].[Article in Dutch]. H2O 13:29-31.
Levi PS, Riis T, Alnøe AB, Peipoch M, Mætszke K, Pedersen CB, 2015. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18:914-931. DOI: https://doi.org/10.1007/s10021-015-9872-y
Li J, Yang X, Wang Z, Shan Y, Zheng Z, 2015. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresour. Technol. 179:1-7. DOI: https://doi.org/10.1016/j.biortech.2014.11.053
Li W, Li Y, Zhong J, Fu H, Tu J, Fan H, 2018. Submerged macrophytes exhibit different phosphorus stoichiometric homeostasis. Front. Plant Sci. 9:1-9. DOI: https://doi.org/10.3389/fpls.2018.01207
Lone PA, Bhaerdwaj AK, Shah KW, 2014. Macrophytes as powerful natural tools for water quality improvement. Res. J. Bot. 9:24-30. DOI: https://doi.org/10.3923/rjb.2014.24.30
Lorenzen CJ, 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12:343-346. DOI: https://doi.org/10.4319/lo.1967.12.2.0343
Lu J, Bunn SE, Burford MA, 2018. Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci.Total Environ. 622-623:29-40. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.199
Lu J, Faggotter SJ, Bunn SE, Burford MA, 2017. Macrophyte beds in a subtropical reservoir shifted from a nutrient sink to a source after drying then rewetting. Freshwater Biol. 62:854-867. DOI: https://doi.org/10.1111/fwb.12904
Lürling M, Mackay E, Reitzel K, Spears BM, 2016. A critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97:1-10. DOI: https://doi.org/10.1016/j.watres.2016.03.035
Madsen JD, Chambers PA, James WF, Koch EW, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71-84. DOI: https://doi.org/10.1023/A:1017520800568
Marengo JA, Alves LM, Alvala RC, Cunha AP, Brito S, Moraes OLL, 2017. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Ann. Acad. Bras. Cienc. 90:1973-1985. DOI: https://doi.org/10.1590/0001-3765201720170206
Marengo, JA, Jones, R, Alves, LM, Valverde, MC, 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 29:2241-2255. DOI: https://doi.org/10.1002/joc.1863
Moore MT, Locke MA, Kröger R, 2016. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff. Chemosphere 54:149-160. DOI: https://doi.org/10.1016/j.chemosphere.2016.06.071
Mosley LM, 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 140:203-214. DOI: https://doi.org/10.1016/j.earscirev.2014.11.010
Nascimento PRF, Pereira SMB, Sampaio EVSB, 2008. [Biomassa de Egeria densa nos reservatórios da hidroelétrica de Paulo Afonso-Bahia].[Article in Portuguese]. Planta Daninha 26:481-486. DOI: https://doi.org/10.1590/S0100-83582008000300002
Oliveira NMB, Sampaio EVSB, Pereira SMB, Moura Junior AM, 2005. [Capacidade de regeneração de Egeria densa nos reservatórios de Paulo Afonso, BA].[Article in Portuguese]. Planta Daninha 23:263-369. DOI: https://doi.org/10.1590/S0100-83582005000200026
Pi N, Tam NF, Wong MH, 2011. Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants. Mar. Pollut. Bull. 63:402-411. DOI: https://doi.org/10.1016/j.marpolbul.2011.05.036
Rocha Junior CAN, Costa MRA, Menezes RF, Attayde JL, Becker V, 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30:0. DOI: https://doi.org/10.1590/s2179-975x2117
Rooney N, Kalff J, Habel, C, 2003. The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec, Canada. Limnol. Oceanogr. 48:1927-1937. DOI: https://doi.org/10.4319/lo.2003.48.5.1927
Rosseel Y, 2012. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48:1-36. DOI: https://doi.org/10.18637/jss.v048.i02
Sampaio EVSB, 2005. [Aproveitamento da macrófita aquática Egeria densa como adubo orgânico].[Article in Portuguese]. Planta Daninha 23:169-174. DOI: https://doi.org/10.1590/S0100-83582005000200001
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923-8929. DOI: https://doi.org/10.1021/acs.est.6b02204
Silvino RF, Barbosa F, 2015. Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use. Braz. J. Biol. 75:607-615. DOI: https://doi.org/10.1590/1519-6984.18913
Soares E, 2013. [Seca no Nordeste e a transposição do rio São Francisco].[Article in Portuguese]. Geografias 9:75-86.
Srivastava J, Gupta A, Chandr, H, 2008. Managing water quality with aquatic macrophytes. Rev. Environ. Sci Biotechnol. 7:255-266. DOI: https://doi.org/10.1007/s11157-008-9135-x
Tedesco MJ, Gianello C, Bissani C, Bohnen H, Volkweiss SJ, 1995. ]Análise de solo, plantas e outros materiais].[Book in Portuguese]. Departamento de Solos da Universidade Federal do Rio Grande do Sul: 174 pp.
Tong Y, Zhang W, Wang X, Couture R-M, Larssen T, Zhao Y, Lin Y, 2017. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geosci. 10:507-511. DOI: https://doi.org/10.1038/ngeo2967
Trindade CRT, Pereira SA, Albertoni EF, Palma-Silva C, 2010. [Caracterização e importância das macrófitas aquáticas com ênfase nos ambientes límnicos do Campus Carreiros - FURG].[Article in Portuguese]. Cad. Ecol. Aquat. 5:1-22.
Vanderstukken M, Mazzeo N, van Colen W, Declerck SAJ, Muylaert K, 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biol. 56:1837-1849. DOI: https://doi.org/10.1111/j.1365-2427.2011.02624.x
Verhofstad MJJM, Alirangues Núñez MM, Reichman,EP, van Donk E, Lamers LPM, Bakker ES, 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquat. Bot. 141:29-38. DOI: https://doi.org/10.1016/j.aquabot.2017.04.004
Wallsten M, 1980. Effects of the growth of Elodea canadensis Michx. in a shallow lake (Lake Tämnaren, Sweden), p. 139-146. In: M. Dokulil, H. Metz and D. Jewson (eds.), Shallow lakes contributions to their limnology. Springer. DOI: https://doi.org/10.1007/978-94-009-9206-1_21
Wang L, Liu Q, Hu C, Liang R, Qiu J, Wang Y, 2018. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus. Limnology 19:355-366. DOI: https://doi.org/10.1007/s10201-018-0538-2
Wetzel RG, 1975. Limnology. WB Saunders Co., Philadelphia: 743 pp.
Wilson DO, 1972. Phosphate nutrition of the aquatic angiosperm Myriophyllum exalbescens Fern. Limnol. Oceanogr. 17:612-616. DOI: https://doi.org/10.4319/lo.1972.17.4.0612
Wu Y, Wen Y, Zhou J, Wu Y, 2013. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J. Civ. Eng. 18:323. DOI: https://doi.org/10.1007/s12205-014-0192-0
Xing W, Shi Q, Liu H, Liu G, 2016. Growth rate, protein: RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress. Knowl. Manag. Aquat. Ecosyst. 25:1-11. DOI: https://doi.org/10.1051/kmae/2016012
Yu J, Zhong J, Chen Q, Huang W, Hu L, Zhang Y, Fan C, 2018. An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. Environ. Sci. Pollut. Res. 25:24682-24694. DOI: https://doi.org/10.1007/s11356-018-2432-1
Zeng L, He F, Dai Z, Xu D, Liu B, Zhou Q, Wu Z, 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecol. Eng. 106:578-587. DOI: https://doi.org/10.1016/j.ecoleng.2017.05.018
Zeng Q, Qin L, Li X, 2015. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Sci. Total Environ. 536:686-675. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.042
Zhang C, Liu H, Gao X, Zhang H. 2016. Modeling nutrients, oxygen and critical phosphorus loading in a shallow reservoir in China with a coupled water quality - Macrophytes model. Ecol. Indic. 66:212-219. DOI: https://doi.org/10.1016/j.ecolind.2016.01.053

Edited by

Franco Tassi, University of Florence, Italy

How to Cite

Barbosa, Vanessa Virginia, Juliana dos Santos Severiano, Dayany Aguiar de Oliveira, and José Etham de Lucena Barbosa. 2020. “Influence of Submerged Macrophytes on Phosphorus in a Eutrophic Reservoir in a Semiarid Region: Influence of Submerged Macrophytes on Phosphorus”. Journal of Limnology 79 (2). https://doi.org/10.4081/jlimnol.2020.1931.

List of Cited By :

Crossref logo