Seasonality of the N2O cycle of the Biobío River during the megadrought

Nitrous oxide during a megadrought

  • Marcela Cornejo-D'Ottone | marcela.cornejo@pucv.cl Pontificia Universidad Católica de Valparaíso, Escuela de Ciencias del Mar, Chile.
  • Ricardo Figueroa University of Concepción, Centro EULA, Faculty of Environmental Science, Chile.
  • Oscar Parra University of Concepción, Centro EULA, Faculty of Environmental Science, Chile.

Abstract

The mechanisms involved in N2O production, consumption and air-sea interactions in fluvial systems are modulated and affected by several factors, including hydrological, chemical and anthropogenic impacts. In recent decades, the basin of the Biobío River (central Chile) has been impacted by an enhanced precipitation deficit and anthropogenic pressure, so the aim of the present work is to understand the spatial and seasonal dynamics of N2O during a megadrought that has been affecting the river since 2010. We also aim to determine the annual contribution of N2O to the atmosphere and the possible response of the Biobío River to projected climatic changes. Seasonal sampling of the water physical-chemical properties was carried out at 15 stations along 280 km of the river and its five tributaries; the stations were distributed between the pristine headwaters (700 m asl) and the outlet of the river at the Pacific Ocean. The longitudinal distribution of oxygen, nutrients, and nitrous oxide evidenced agricultural, urban and industrial impacts on the river water. Headwater areas presented the highest oxygen concentration and the lowest nutrient and N2O concentrations, all of which fluctuated with the variability in water discharge with the different seasons. In the middle river section, where agricultural, industrial and urban activities impacted the river, the nutrient and N2O concentrations increased up to 20 and 1.2 times, respectively, compared to those in the headwaters, and the outlet area showed the highest nutrient and N2O concentrations. Throughout the entire river, N2O oversaturation exhibited a pronounced seasonal cycle with maxima occurring during the dry season. Our results suggest that urban activities had the greatest impact on the Biobío River at its outlet. Furthermore, the inverse relationship between the N2O concentration and water discharge suggests that the predicted future decrease in water discharge may result in higher N2O values in the Biobío River that would expectedly enhance global warming further, through a positive feedback.

 

Downloads

Download data is not yet available.
Published
2018-09-27
Section
Original Articles
Edited by
Franco Tassi, University of Florence, Italy
Keywords:
Nitrous oxide, megadrought, rivers
Statistics
Abstract views: 920

PDF: 236
HTML: 12
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
1.
Cornejo-D’Ottone M, Figueroa R, Parra O. Seasonality of the N2O cycle of the Biobío River during the megadrought. jlimnol [Internet]. 27Sep.2018 [cited 25Feb.2020];78(1). Available from: https://www.jlimnol.it/index.php/jlimnol/article/view/jlimnol.2018.1767