Technologies for lake restoration

Submitted: 8 December 2011
Accepted: 8 December 2011
Published: 1 September 2003
Abstract Views: 3621
PDF: 2702
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco-) technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial) alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self-purification or anaerobic technologies, to eliminate the pollutant nitrate by microbial denitrification. The retention time is an important parameter for modellers and limnologists, that allows them to decide, which technologies – hydromechanical, chemical or biological – have to be applied alone or in combination to cope best with each specific problem. The technologies have to be economical and ecological safe.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

KLAPPER, Helmut. 2003. “Technologies for Lake Restoration”. Journal of Limnology 62 (s1):73-90. https://doi.org/10.4081/jlimnol.2003.s1.73.

List of Cited By :

Crossref logo