The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

Accepted: 13 June 2016
HTML: 1293
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume) of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5). Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C). Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in temperature. Predictive models that consider only temperature as a drive factor can therefore fail in predicting the expansion of this potentially toxic cyanobacterium.
Supporting Agencies
ANII, PEDECIBAHow to Cite
-
Xiaoli Shi, Shengnan Li, Huabing Li, Feizhou Chen, Qinglong WuFrontiers in Microbiology : 2019
-
Florencia S. Alvarez Dalinger, Claudia Nidia Borja, Camila Muñoz, Liliana Beatriz Moraña, Verónica Laura LozanoHydrobiologia : 2025
-
Piotr Rzymski, Agnieszka Brygider, Mikołaj KokocińskiLimnological Review : 2017
-
Petr Dvořák, Petr Hašler, Dale A. Casamatta, Aloisie PoulíčkováFottea : 2021
-
L. Chen, P. Zhang, G. P. Lv, Z. Y. ShenInternational Journal of Environmental Science and Technology : 2019
-
Nadia Elidrissi El Yallouli, Majida Lahrouni, Richard Mugani, Brahim Oudra, John PotéDiscover Public Health : 2024
-
Paula Vico, Andrés Iriarte, Sylvia Bonilla, Claudia PicciniBiodiversity Data Journal : 2021