Changes in cyanobacterial density due to application of Artificial Floating Island model with macrophytes: an experimental case study in a tropical reservoir

Submitted: 15 January 2020
Accepted: 2 October 2020
Published: 28 October 2020
Abstract Views: 2299
PDF: 520
Supplementary: 127
HTML: 27
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


The Valle de Bravo (VB) reservoir is part of an important hydraulic system that provides about 40% of potable water to 21.5 million inhabitants of the Metropolitan Zone of Mexico City (Mexico). This reservoir shows deterioration in water quality due to its current eutrophic condition, which favors the recurring of cyanobacterial blooms. To date, there are no restoration strategies for this reservoir, so the use of eco-technologies such as Artificial Floating Islands (AFI) is proposed for the removal of nutrients and the improvement of water quality. Therefore, in this work AFIs have been implemented using two macrophytes (Phragmites australis (AFI-P) and Schoenoplectus sp. (AFI-S)) to evaluate the presence and distribution of potentially toxic cyanobacteria in relation to physicochemical variations at the AFI sites. The study was carried out over a period of 24 months (October 2016 -September 2018) divided into two cycles (C-I and C-II) with a dry and rainy season each. Cyanobacteria were the dominant group in the phytoplankton during all the study period. Nine potentially toxic cyanobacterial species were detected, with the predominance of Microcystis aeruginosa, Aphanizomenon yezoense, Pseudanabaena mucicola, Anabaena planctonica and Planktothrix agardhii. In this work, AFIs increased nitrates and had no effect on phosphates. Cyanobacteria were not reduced at AFI sites, however in rainy season in the second annual cycle (C-II) the concentrations of extracellular microcystins in the AFI-P and AFI-S were decreased while intracellular toxins were more strongly reduced only in the AFI-S.

Each AFI had a specific effect on four out of five potentially toxic cyanobacteria. Thus, AFI-P promoted the increase of M. aeruginosa but reduced A. planctonica, while AFI-S promoted both A. yezoense and P. mucicola. The AFIs modified the dynamics among cyanobacteria particularly diazotrophic A. yezoense which was favored by nitrates and the other three species maintained their presence by the phosphates. M. aeruginosa, non-diazotrophic, responded to nitrates only in the absence of A. yezoense. Finally, in VB reservoir we found a mutually exclusive relationship between M. aeruginosa and A. yezoense likewise between A. planctonica and P. mucicola.



PlumX Metrics


Download data is not yet available.


Abed SN, Almuktar SA, Scholz M, 2017. Remediation of synthetic greywater in mesocosm-Scale floating treatment wetlands. Ecol. Eng. 102:303-319. DOI:
Alillo-Sánchez JL, Gaytán-Herrera ML, Martínez-Almeida VM, Ramírez-García P, 2014. Microcystin-LR equivalents and their correlation with Anabaena spp. in the main reservoir of a hydraulic system of Central Mexico. Inland Waters 4:327-336. DOI:
Borne KE, Tanner CC, Fassman-Beck EA, 2013. Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci. Technol. 68:1657-1664. DOI:
Cao Q, Wan X, Shu X, Xie L, 2019. Bioaccumulation and detoxication of microcystin-LR in three submerged macrophytes: The important role of glutathione biosynthesis. Chemosphere 225:935-942. DOI:
Carnero-Bravo V, Merino-Ibarra M, Ruiz-Fernández AC, Sanchez-Cabeza JA, Ghaleb B, 2015. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico). Environ. Sci. Pollut. Res. Int. 22:4680-4694. DOI:
Castro-Castellon AT, Chipps MJ, Hankins NP, Hughes JMR, 2016. Lessons from the “Living-Filter”: An in-reservoir floating treatment wetland for phytoplankton reduction prior to a water treatment works intake. Ecol. Eng. 95:839-851. DOI:
Chang Y, Cui H, Huang M, He Y, 2017. Artificial floating islands for water quality improvement. Environ. Rev. 25:350-357. DOI:
Chen M, Ding S, Chen X, Sun Q, Fan X, Lin J, Ren M, Yang L, Zhang C, 2018. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Res. 133:153-164. DOI:
Choudhury MI, Segersten J, Hellman M, McKie BG, Hallin S, Ecke F, 2019. Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate. Ecol. Eng. 138:126-132. DOI:
Colin R, Eguiarte LE, 2016. Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. Am. J .Bot. 103:876-887. DOI:
Comas A, 1996. Las chlorococcales dulceacuícolas de Cuba. Bibliotheca Phycologica. Band 99. J. Cramer, Berlin-Stuttgart: 192 pp.
Cronberg G, Annadotter H, 2006. Manual on aquatic cyanobacteria: A photo guide and a synopsis of their toxicology. Copenhagen: International Society for the Study of Harmful Algae and the United Nations Educational, Scientific and Cultural Organization: 106 p.
Dash MC, 1993. Fundamentals of Ecology. Tata McGraw-Hill, New Delhi: 373 pp.
Davis TW, Harke MJ, Marcoval MA, Goleski J, Orano-Dawson C, Berry DL, Gobler CJ, 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 61:149-162. DOI:
Fang T, Bao S, Sima, X, Jiang H, Zhu W, Tang W, 2016. Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecol. Eng. 94:320-328. DOI:
Ferber LR, Levine SN, Lini A, Livingston GP, 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biol. 49:690-708. DOI:
Ferdoushi Z, Haque F, Khan S, Haque M, 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turk J. Fish Aquat. Sci. 8:253-258.
Flores E, Frías JE, Rubio LM, Herrero A, 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117-133. DOI:
Gao X, Wang Y, Sun B, Li N, 2019. Nitrogen and phosphorus removal comparison between periphyton on artificial substrates and plant-periphyton complex in floating treatment wetlands. Environ. Sci. Pollut. Res. 26:21161-21171. DOI:
García PR, Nandini S, Sarma SSS, Robles Valderrama E, Cuesta I, Hurtado MD, 2002. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia 467:99-108. DOI:
Gaytan-Herrera ML, Martinez-Almeida V, Oliva-Martinez MG, Duran-Diaz Á, Ramirez-Garcia P, 2011. Temporal variation of phytoplankton from the tropical reservoir Valle de Bravo, Mexico. J. Environ. Biol. 32:117-126.
Ge Z, An R, Fang S, Lin P, Li C, Xue J, Yu S, 2017. Phragmites australis+Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland. Scientifica 2017: 8539093. DOI:
Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB, 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87-97. DOI:
Headley TR, Tanner CC, 2012. Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. Crit. Rev. Environ. Sci. Tech. 42:2261-2310. DOI:
Herrero A, Flores E, 2019. Genetic responses to carbon and nitrogen availability in Anabaena. Environ. Microbiol. 21:1-17. DOI:
Hubbard RK, 2010. Floating vegetated mats for improving surface water quality, p. 211-244. In: S. Vishal (ed.), Emerging environmental technologies. Springer: Cham. DOI:
Huber-Pestalozzi G, 1955. [Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil: Euglenophyceen].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart: 606 pp.
Jankowiak J, Hattenrath‐Lehmann T, Kramer B J, Ladds M, Gobler CJ, 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64:1347-1370. DOI:
Janson S, 2002. Cyanobacteria in symbiosis with diatoms, p. 1-10. In: A.N. Rai, B. Bergman and U. Rasmussen (eds.), Cyanobacteria in symbiosis. Springer: Cham. DOI:
Komárek J, Anagnostidis K, 1999. [Cyanoprokaryota 1 Teil: Chlorococcales]. In: H. Etts, G. Gartner, H. Heynig and D. Mollenhauer (eds.), [Süsswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer: Frankfurt am Main.
Komárek J, Fott B, 1983. Chlorophyceae (Grlinalgen), Ordung: Chlomcoccales] p. 135-235. In: G. Huber-Pestalozzi (ed.), [Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil: Euglenophyceen].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.
Komárek J, H. Kling and Komáreková, 2003. Filamentous cyanobacteria. In: J.D. Wehr and R.G. Sheath (eds.), Freshwater Algae of North America. Ecology and Classification. Academic Press: Amsterdam. DOI:
Lucke T, Walker C, Beecham S, 2019. Experimental designs of field-based constructed floating wetland studies: a review. Sci. Total Environ. 10: 199-208. DOI:
Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VL, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol. 58: 552-559. DOI:
Márquez-Pacheco H, Hansen AM, Falcón-Rojas A, 2013. Phosphorous control in a eutrophied reservoir. Environ. Sci. Pollut. Res. Int. 20: 8446-8456. DOI:
Mayo AW, Hanai EE, 2017. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Phys. Chem. Earth (A,B,C) 100:170-180. DOI:
Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O, 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59:303-327. DOI:
Merino-Ibarra M, Monroy-Ríos E, Vilaclara G, Castillo FS, Gallegos ME, Ramírez-Zierold J, 2008. Physical and chemical limnology of a wind-swept tropical highland reservoir. Aquat. Ecol. 42:335-345. DOI:
Mesquita MC, Prestes ACC, Gomes AM, Marinho MM, 2019. Direct effects of temperature on growth of different tropical phytoplankton species. Microb. Ecol. 79:1-11. DOI:
Nakai S, Zou G, Okuda T, Tsai TY, Song X, Nishijima W, Okada M, 2010. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands. Allelopathy J. 26:1.
Nakamura K, Mueller G, 2008. Review of the performance of the artificial floating island as a restoration tool for aquatic environments. Proceedings of the World Environmental and Water Resources Congress 2008: Ahupua'A. DOI:
Nandini S, Sánchez-Zamora C, Sarma SSS, 2019. Toxicity of cyanobacterial blooms from the reservoir Valle de Bravo (Mexico): A case study on the rotifer Brachionus calyciflorus. Sci. Total Environ. 688:1348-1358. DOI:
Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E, 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15:1239-1253. DOI:
Olguín EJ, Sánchez-Galván G, 2017. Floating wetlands for the improvement of water quality and provision of ecosystem services in urban eutrophic lakes, p. 293-305. In: A. Ansari, S. Gill, R. Gill, R. Lanza and L. Newman (eds.), Phytoremediation. Springer: Cham. DOI:
Olvera-Viascán V, Bravo-Inclán L, Sánchez-Chávez J, 1998. Aquatic ecology and management assessment in Valle de Bravo reservoir and its watershed. Aquat. Ecosyst. Health Manag. 1:277-290. DOI:
Paerl HW, 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuar. Coast. 32: 593-601. DOI:
Park HK, Byeon MS, Choi MJ, Yun SH, Jeon NH, You KA, Lee H, 2018. Water quality improvement through the interaction of biotic and abiotic variables within the rhizospheric zone of an artificial floating vegetation island. J. Freshwater Ecol. 33: 57-72. DOI:
Pavan F, Breschigliaro S, Borin M, 2015. Screening of 18 species for digestate phytodepuration. Environ. Sci. Pollut. Res. Int. 22:2455-2466. DOI:
Pavlineri N, Skoulikidis NT, Tsihrintzis VA, 2017. Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J. 308:1120-1132. DOI:
Pflugmacher S, Wiegand C, Beattie KA, Krause E, Steinberg CE, Codd GA, 2001. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. ex steud. Environ. Toxicol. Chem. 20:846-852. DOI:
Pimentel JS, Giani A, 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl. Environ. Microbiol. 80:5836-5843. DOI:
Popovsky J, Pfiester LA, 1990. [Dinophyceae (Dinofla gellidae)]. In: H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer (eds.), [Süsswassserflora von Mitteleropa].[Book in German]. Gustav Fischer Verlag: Jena.
Prescott GW, 1962. Algae of the Western Great Lakes Area. Willam C. Brown Co., Dubuque: 977 pp.
Ramírez-Zierold JA, Merino-Ibarra M, Monroy-Ríos E, Olson M, Castillo FS, Gallegos ME, Vilaclara G, 2010. Changing water, phosphorus and nitrogen budgets for Valle de Bravo reservoir, water supply for Mexico City Metropolitan Area. Lake Reserv. Manag. 26:23-34. DOI:
Rolff C, Almesjö L, Elmgren R, 2007. Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser. 332:107-118. DOI:
Romero-Oliva CS, Contardo-Jara V, Pflugmacher S, 2015. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 105:62-73. DOI:
Round FE, Crawford RM, Mann DG, 1990. Diatoms: Biology and morphology of the genera. Cambridge University Press, Cambridge: 758 pp.
Sabour B, Loudiki M, Vasconcelos V, 2009. Growth responses of Microcystis ichthyoblabe Kützing and Anabaena aphanizomenoides Forti (cyanobacteria) under different nitrogen and phosphorus conditions. Chem. Ecol. 25:337-344. DOI:
Šantrůčková H, Rejmánková E, Pivničková B, Snyder JM, 2010. Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry 101:295-310. DOI:
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923-8929. DOI:
Shahid MJ, Arslan M, Ali S, Siddique M, Afzal M, 2018. Floating wetlands: a sustainable tool for wastewater treatment. Soil Air Wate. 46:1800120. DOI:
Sun J, Liu D, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346. DOI:
Takeda F, Nakano K, Aikawa Y, Nishimura O, Shimada Y, Fukuro S, Tanaka H, Hayashi N, Inamori Y, 2011. Allelopathic potential against Microcystis aeruginosa by emergent macrophytes on floating beds. J. Water Environ. Technol. 9:371-380. DOI:
Tell G, Conforti V, 1986. [Euglenophyta pigmentadas de la Argentina].[Book in Spanish]. Bibliotheca Phycologica, 75. J. Cramer: Berlin; 301 pp.
Tena-Flores JA, González-Elizondo MS, Herrera-Arrieta Y, Almaraz-Abarca N, Mayek-Pérez N, Vanzela AL, 2014. Karyotype characterization of four Mexican species of Schoenoplectus (Cyperaceae) and first report of polyploid mixoploidy for the family. Caryologia 67:124-134. DOI:
Triantis T, Tsimeli K, Kaloudis T, Thanassoulias N, Lytras E, Hiskia A, 2010, Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters. Toxicon 55:979-989. DOI:
Urakawa H, Dettmar DL, Thomas S, 2017. The uniqueness and biogeochemical cycling of plant root microbial communities in a floating treatment wetland. Ecol. Eng. 108:573-580. DOI:
van der Grinten E, Janssen AP, de Mutsert K, Barranguet C, Admiraal W, 2005. Temperature-and light-dependent performance of the cyanobacterium Leptolyngbya foveolarum and the diatom Nitzschia perminuta in mixed biofilms. Hydrobiologia 548:267-278. DOI:
Wang C, Wang Z, Wang P, Zhang S, 2016. Multiple effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms: application of response surface methodology. Environ. Model. Assess. 21:247-259. DOI:
Wang CY, Sample DJ, Day SD, Grizzard TJ, 2015. Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol. Eng. 78:15-26. DOI:
Wang Y, Yin X, Cai Y, Yang Z, 2019. An enhanced system with macrophytes and polyurethane sponge as an eco-technology for restoring eutrophic water: A pilot test. Water 11:1828. DOI:
Weragoda SK, Jinadasa KBSN, Zhang DQ, Gersberg, RM, Tan SK, Tanaka N, Jern NW, 2012. Tropical application of floating treatment wetlands. Wetlands 32:955-961. DOI:
West M, Fenner N, Gough R, Freeman C, 2017. Evaluation of algal bloom mitigation and nutrient removal in floating constructed wetlands with different macrophyte species. Ecol. Eng. 108:581-588. DOI:
Wetzel RG, Likens GE, 2000. Composition and biomass of phytoplankton, p. 147-174. In: Limnological analyses. Springer: Cham. DOI:
WHO, 1998. Guidelines for drinking water quality. Second ed. Health Criteria and Other Supporting Information, vol. 2. World Health Organization, Geneva. Available from:
Yeh N, Yeh P, Chang YH, 2015. Artificial floating islands for environmental improvement. ‎Renew. Sustain. Energy Rev. 47: 616-622. DOI:
Yéprémian C, Catherine A, Bernard C, Congestri R, Elersek T, Pilkaityte R, 2017. Phycocyanin extraction and determination, p 335-338. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook of cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons: Chichester. DOI:
Zhang CB, Liu WL, Pan XC, Guan M, Liu SY, Ge Y, Chang J, 2014. Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecol. Eng. 73:58-63. DOI:
Zhou L, Chen G, Cui N, Pan Q, Song X, Zou G, 2019. Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the culture solutions of typical artificial floating-bed plants. Bull. Environ. Contam. Toxicol. 102:115-121. DOI:
Zhu M, Zhu G, Zhao L, Yao X, Zhang Y, Gao G, Qin B, 2013. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ. Sci. Pollut. Res. Int. 20:1803-1811. DOI:

Edited by

Rossano Bolpagni, Dept. of Life Science, Inland water Ecology Lab, University of Parma, Italy

Supporting Agencies

DGAPA-PAPIIT (IN219218) for financial support and to National Commission of Water, Mexico 2016-2017 for partially supported this research

How to Cite

Ramírez-García, Pedro, and David Chicalote-Castillo. 2020. “Changes in Cyanobacterial Density Due to Application of Artificial Floating Island Model With Macrophytes: An Experimental Case Study in a Tropical Reservoir”. Journal of Limnology 80 (1).

List of Cited By :

Crossref logo