Causes and effects of long periods of ice cover on a remote high Alpine lake

Submitted: 9 December 2011
Accepted: 9 December 2011
Published: 1 September 2000
Abstract Views: 2230
PDF: 566
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The response of the physical and chemical limnology of Hagelseewli (2339 m a.s.l.) to local meteorological forcing was investigated from 1996 to 1998 using an automatic weather station, thermistor chains, water samples and sediment traps. On-site meteorological measurements revealed the paramount importance of local topographic shading for the limnology of the lake. A high cliff to the south diminishes incident radiation by 15% to 90%, resulting in a long period of ice cover. Hence, the spring and summer seasons are extremely condensed, allowing only about 2 months per year for mixing, oxygen uptake, nutrient inflow, water exchange and phytoplankton growth. Regular measurements of water temperature, chemistry and diatom composition show that Hagelseewli responds very rapidly to changes in nutrient concentrations and light conditions. This response is restricted mainly to an extremely short productivity pulse, which takes place as soon as the lake is completely free of ice. Ice-free conditions are indicated by the occurrence of planktonic diatoms. In contrast to most low-altitude lakes, maximum productivity occurs in the middle of the water column (6-9 m), where first light, and then soluble reactive phosphorus (SRP), are the limiting factors. During the period of thawing, large amounts of ammonium enter the lake. Nevertheless, allochthonous nutrient input is not important because SRP, the limiting nutrient for algal growth, originates from the sediments. Water chemistry data and data from sediment traps show that, although autochthonous calcite precipitation does occur, the calcite crystals are redissolved completely in the bottom waters during the extended period of ice cover. Thus, the most important factor for changes in the nutrient budget, primary production and preservation of calcite is the bottom water oxygen status, which is governed by the occurrence of an ice-free period. We hypothesise that the duration of the ice-free period is of minor importance for the generation of particles that might be archived in the sedimentary rec??ord as proxy climate indicators. Such particles are produced mainly during times of peak primary production, which last only for a few days before production decreases again to very low levels. Therefore, with respect to the type of climatic signal that might be recorded in Hagelseewli, we presume that what is most likely to be archived in the sedimentary record is the mere occurrence, rather than the duration of the ice-free period.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

OHLENDORF, Christian, Christian BIGLER, Gerrit-Hein GOUDSMIT, Gerry LEMCKE, David M. LIVINGSTONE, André F. LOTTER, Beat MÜLLER, and Michael STURM. 2000. “Causes and Effects of Long Periods of Ice Cover on a Remote High Alpine Lake”. Journal of Limnology 59 (s1):65-80. https://doi.org/10.4081/jlimnol.2000.s1.65.

List of Cited By :

Crossref logo