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ABSTRACT

Lacustrine ecosystems are directly influenced by terrestrial soil erosion, and excessive sediment loading constitutes a significant
and widespread environmental issue. In order to investigate the response of catchment soil erosion and organic carbon burial to
climate change and human activity, a sediment core spanning the last 160 years was retrieved from Lake Chenghai in southwest
China. Multi-proxy analysis including grain-size composition and geochemical indicators were undertaken in this study. The result
of grain-size vs. standard deviation method shows that the sensitive component with a modal size of 13.2 um is related to fluvial
processes and sensitive to the catchment soil erosion. The increasing intensity of soil erosion was mainly determined by the
weakening of Indian summer monsoon and global warming, as well as intensive human activities during the middle of 20™ century,
which resulted in decreasing vegetation cover in Lake Chenghai catchment. The organic carbon burial rate was also attributed to
the catchment disturbance, indicating that increased catchment soil erosion may impact the terrestrial carbon recycling.
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INTRODUCTION

Lakes are vital ecosystems of great economic, cultural,
scientific and educational values (Dudgeon ef al., 2006).
Despite the small fraction of the surface of the Earth
occupied by lakes, they play an important role in climate
system, by exchanging heat and water with the
atmosphere and affecting the global carbon cycle
(Krinner, 2003; Cole et al., 2007; Tranvik et al., 2009). In
recent years, intense human activity and climate change
have exerted significant effects on the freshwater
ecosystems, environmental problems such as siltation,
eutrophication, loss of biodiversity and degradation of
ecological function (Liu and Diamond, 2005; Dudgeon et
al., 2006; Vanmaercke et al., 2015). Because long-term
monitoring records of water quality and ecological
evolution are scarce in the world, palacolimnology is
crucial for understanding how lacustrine ecosystem
response to past disturbance and evolutional processes
(Dearing et al., 2006; Seddon et al., 2014).

Sediment accumulation rate (SAR), is a fundamental
parameter of lacustrine sedimentary processes, affecting
lake morphology, stratification, nutrient dynamics and
assemblages of aquatic flora and fauna (Rose ef al., 2011;
Zhang et al., 2013). Previous studies often relate the
changes of SAR to soil erosion in the catchment, especially
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land use and land cover changes caused by human activity
(Liu et al., 2007; Rose et al., 2011; Xue and Yao, 2011; Xu
etal.,2017). However, less focus has been directed towards
the influence of atmospheric dust and precipitation of
autogenetic carbonates (Neff ez al., 2008; Yu et al., 2015).
Lacustrine varve characteristics and modern observations
suggest that the atmospheric dust is also an important
source of lacustrine sediment in middle latitudes of China
(Chu et al., 2009; Liu et al., 2009; Xiao et al., 2012; Chen
F. et al., 2013; Dietze et al., 2014). Furthermore, global
warming and eutrophication could also play a direct role
leading to increases in autochthonous sediments from
increased productivity (Rose ef al., 2011; Yu et al., 2015).
Therefore, more studies are needed to assess the variations
of soil erosion and different impacts of climatic and
anthropogenic factors.

Terrigenous elements such as Al, Fe, K, and Ti have
been used to estimate supply of siliciclastic materials of
fluvial or aeolian origin in lacustrine sediments (Yancheva
et al., 2007; Chen HF et al., 2013; Shen et al., 2013;
Zhang E. et al., 2017). Among these, Al, Fe, and K are
not necessarily good indicators of sedimentary terrigenous
origins: the element Fe is often influenced by authigenic
precipitation from Fe-Mn oxyhydroxides and pyrite under
reducing conditions (Naeher ef al., 2013); while Al and K
in siliciclastic materials are sensitive to chemical
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weathering and greatly dependent on grain-size (Yang et
al., 2006). Therefore, Ti is more commonly applied as an
efficient indicator of siliciclastic materials transported by
seasonal rivers and to reconstruct soil erosion history in
the catchment of lake (Shen et al., 2013; Zhang E. et al.,
2017). Grain-size parameters of mineral sediment are
closely related to changes in provenance, transporting
mechanism and sedimentary process (Sun et al., 2002;
Xiao et al., 2008; Dietze et al., 2012). Recently, the
transport and deposition dynamics of the lacustrine
sediments are well partitioned by many numerical
methods, for example, the grain-size vs. standard
deviation method (Sun et al., 2003; Chen F. et al., 2013),
the Weibull function (Sun et al., 2002), the log-normal
distribution function (Xiao et al., 2008), and eigenspace
analysis (Dietze et al., 2012; Yu et al., 2016).

The Yunnan-Guizhou Plateau is a typical plateau
mountain region in southwest China. It is also one of the
Five Lake Regions of China, located in the southeast
margin of the Qinghai-Tibetan Plateau. The area has a
complex topography along with abundant precipitation in
summer, and human activity has brought serious soil
erosion (Barton ef al., 2004). However, long-term
information concerning soil erosion and siltation of lakes
is limited in this region (Wang ef al., 2011a; Wang et al.,
2011b). Moreover, these studies did not take the
atmospheric dust loading into consideration, leading to
overestimation in the soil erosion flux, which could be
misleading to understand the linkage of soil erosion,

human activity and climate change. Lake Chenghai is
located in the upper and middle reaches of the Jinsha
River in Yunnan Province, where soil erosion has become
a major concern for land management because it
drastically reduces arable land and yields abundant
sediment (Su ef al., 2014). The objectives of this study
are therefore to estimate the historical soil erosion and its
implication for terrestrial carbon cycling for Lake
Chenghai over the past 160 years using lacustrine
deposits, and the coupling effects of climate change and
human activity at the decadal timescale are also discussed.

METHODS
Site description

Lake Chenghai (Fig.la, 26°27-26°38'N, 100°38"—
100°41'E, 1500 m above sea level) is located in Yongsheng
County, Yunnan Province in southwest China. It is a
tectonic depression lake formed during the early
Pleistocene (Wang and Dou, 1998). The lake has a surface
area of about 77 km?, a maximum depth of about 35 m with
amean depth of 20 m, and the area of the catchment is 318
km? (Wu et al., 2004). There are no perennial inlet or
outflow streams in the catchment at present, only a tunnel
was excavated to divert water from the Xianren River into
Chenghai for reducing lake level in 1993 AD, and the lake
water is slightly brackish and alkaline, mainly fed by
precipitation and groundwater (Wang and Dou, 1998). The
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Fig. 1. Lake location (a) and sampling site (b).
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lake is currently eutrophic and the phytoplankton
population is dominated by cyanobacteria (Wu et al., 2004;
Wan et al., 2005).

The region has a temperate climate with distinct dry
and wet seasons. Mean annual precipitation is about 740
mm, more than 90% of which falls from June to
September influenced by the southwest summer monsoon
(Wang and Dou, 1998). Between October and May, the
region is dominated by the dry Tibetan High, preventing
the influence of humid air masses. The mean annual air
temperature is 13.5°C and the average annual evaporation
is approximately 2040 mm (Wan et al., 2005). The lake
basin is surrounded by mountains ranging from 2300-
4000 m asl, with a broad valley to the south. Catchment
bedrock mainly consists of basalt, sandstones, dolomite
limestone and muddy shale, topsoil types include red earth
and mountain red brown soil. Pinus yunnanensis forest
and semi-humid evergreen broadleaved forest dominate
the natural vegetation in the catchment, however, the land
cover in the lower valley had been seriously disturbed by
human activity in the 20" century (Wu ef al., 2004).

Sample collection

The sediment core was collected using an UWITEC
gravity corer equipped with a PVC tube of 60-cm in
length and 6-cm in outer diameter at a water depth of 31.8
m in April 2012 (CH2012, 55 cm, Fig. 1b, 26°33'29.4"N,
100°39'6.7"E). Inspection of the cores at the time of
sample collection indicated intact recovery of the
sediment-water interface. Core CH2012 was sectioned at
1.0-cm interval in the field. Samples were sealed into
polyethylene bags and stored in the cooler until they were
returned to the laboratory.

Laboratory analysis

In the laboratory, samples were freeze-dried and
weighed to calculate the dry bulk density, which is defined
as dry mass per unit wet volume (Liu ef al., 2000). For
dating, the weighed dry samples were sealed in plastic test
tubes with caps. Radionuclides (*'°Pb, *Ra and '*’Cs)
activity in samples were measured using an ORTEC HPGe
GWL series well-type coaxial low background intrinsic
germanium detector. The unsupported '°Pb (*!°Pb,,) in each
sample was obtained by subtracting the activity of >**Ra
from the total activity of 2'°Pb (Appleby, 2001).

Before TOC and TN were measured using a Euro
3000 Elemental Analyzer, weighted samples were treated
with 1 M HCl to remove carbonates, and then rinsed with
de-ionized water and dried at 60°C. The treated samples
were ground and homogenized with an agate mortar. For
the geochemistry analysis, the samples were homogenized
in an agate mortar, and then completely digested by HCI-
HNO;-HF-HCIO, in Teflon beakers. The concentrations

of major metals were determined using an inductively
coupled plasma atomic emission spectrometer (ICP-
AES), the analytical data quality was assessed using
analysis of reagent blanks, duplicate samples and standard
reference materials (GBWO07309) for each batch of
samples. The concentrations of Fe, Ti, Mn and P are
presented in this study.

All samples were subjected to grain-size analysis using
a Malvern MS 2000 laser grain size analyzer ranging from
0.02 to 2000 um and yielding 100 pairs of grain-size data.
Approximately 0.5 g of wet sediment was pretreated with
30% H,0, to remove organic matter and then with 10%
HCl to remove carbonates. Subsequently, the samples were
rinsed to a pH of about 7, and the sample residue treated
with 20 mL of 0.05 M (NaPOs;), and dispersed using an
ultrasonic bath for 15 min. Every sample was measured for
three times and the mean was calculated and used for the
analysis, and the measurement has an accuracy of +1%.
Grain size vs. standard deviation method was chosen to
identify the sensitive terrestrial components within the lake
setting (Sun et al., 2003). By applying the grain-size vs
standard deviation method, the grain-size fraction with a
high standard deviation can be regarded as the modal grain-
size of an environmentally sensitive component. The
component between the two adjacent low standard
deviations is considered to be sensitive to a specific
environment and depositional process (Sun ef al., 2003).

All the laboratory analyses were performed at the
State Key Laboratory of Lake Science and Environment,
Nanjing Institute of Geography and Limnology, Chinese
Academy of Sciences.

Establishing the chronology and calculating sediment
accumulation rate

Estimation of accumulation rates from the
radionuclides depth distributions documented for the
individual cores requires the use of a model to establish
the chronology or age-depth relationship for the core. The
Constant Initial concentration (CIC) and the Constant
Rate of Supply (CRS) models are the two most widely
used 2!%Pb,, dating models within lacustrine deposits
(Appleby, 2001). CIC model assumes that the initial
20Pp, concentration from water to sediment was
consistent through time. Under this scenario, the 2'°Pb,,
activity will decrease exponentially with mass depth (z)
due to the natural decay process. In contrast, the CRS
model assumes that the supply of >'°Pb,, to the lacustrine
sediment was constant, however, the accumulation rate
could vary through time. The age ¢ at mass depth z is
estimated using this model as follows:

= In (A(0) A@2))/ X (eq. 1)

Where A(0) is the total 2'°Pb,, inventory of the
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sediment core and A(z) is the total ?'°Pb,, inventory in the
sediment core below mass depth z, A is the *'°Pb
radioactive decay constant of 0.03114.

However, the increase of organic matters, turbidity
currents caused by flood and earthquake events might
influence the supply rate of 2°Pb,, in lakes (Appleby
2001; Wan et al., 2005). When there are significant
discrepancies between the results provided by the CRS
model and '*’Cs chronostratigraphic markers, the peak of
137Cs corresponding to the year 1963 can be incorporated
into the CRS model as a composite CRS Model to
improve the final result. The age ¢ of each sediment layer
between the surface and marked layer and below the layer
are calculated as equations (3) and (4), respectively:

t= -In (1+0*(A(0)- A(2))/P)/ L (eq.2)
=T, 1963+ In (A(M)/ A(2))/ 1 (eq. 3)
P=-1* (A(0)- A(M))/(1-¢ HT0-1963) (eq. 4)

Where T, is the sample year, P is the mean ?!Pb,, flux
during the period between sample year and 1963, A(M) is
the total 2!Pb,, inventory in the sediment core below
marked layer corresponding to the year 1963.

The accumulation rate R (g m~ yr') and element (E)
fluxes could be determined as follows:

R= Az/ At * 10000 (eq.5)
E-flux=Ec* R (eq. 6)

RESULTS

Radioisotope profiles and chronologies

The activity profiles of ¥’Cs, 2!Pb and **Ra are
shown in Fig. 2 a,b. The first recognition of '*’Cs activity
is at the mass depth of 9.1 g cm2in the Core CH2012,
while the profile of '*’Cs shows a large and obvious peak
at the mass depth of 8.6 g cm™. ¥’Cs occurring in the year
1952 represents the beginning of atmospheric bomb
testing, however, the '3’Cs activity was lower in the early
stage. Considering diffusion and post depositional
mobility of the radionuclide in sediments, the accuracy of
the first *’Cs occurring position is difficult to identify.
Nevertheless, the influence of diffusion and diagenetic
processes did not significantly change the position of the
maximum peak of *’Cs in sediments. Thus, the first
obvious *’Cs peak at the mass depth of ~8.6 g cm™
corresponds to 1963 AD, which is similar with the widely
recognized peak caused by the global fall-out peak.

The 29Pb and 2?°Ra activities generally reached
equilibrium at the bottom of the sediment core, whereas the
219pp, . profile does not show exponential variations with the
mass depth (Fig. 2b). Therefore, the CRS model might be
more appropriate for the chronological models than the CIC
model. As shown in Fig. 2¢, the CRS model underestimated
the age of the sediments: the CRS model provided a date of
1982 AD at the mass depth of 8.6 g cm™ in Core CH2012,
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which deviated by ~20 years from the '*’Cs date. Thus, the
composite model was chosen to develop the age-mass depth
model (Fig. 2c). The basal age is about 1846 AD, and the
SAR ranges from 157.7 to 3229.8 g m yr! (Fig. 2¢).

Physical and chemical properties of the sediment core

The grain-size distributions from Lake Chenghai
sediments are shown in Fig. 3a, and the data were
characterized by asymmetrical distribution. The
compositions of lithic particles of Lake Chenghai
sediments are shown in Fig. 4. The sediments were mainly
composed of silt, ranging from 73.0 to 93.5%, with a
mean of 77.7%. The trend of the clay content was
negatively correlated with silt because the sand fraction
was extremely low in Lake Chenghai sediments, with a
maximum of 1.5%. The median values ranged from 4.0
to 9.6 pm, with a mean of 5.0 um. The grain size vs.
standard deviation plot shows that two sensitive grain-size
components can be identified based on the two peaks of
standard deviations in the curve at 2.2 ym and 13.2 pum,
their corresponding size ranges were <5.0 um and >5.0
pm respectively (Fig. 3b). The content of coarser
component fluctuated from 41.4 to 77.0 with a mean of
48.4, while the finer content of varied inversely with the
coarser component (Fig. 4). The lithic composition
remained relatively stable before 2003 AD, and then the
content of coarser component significantly increased to
the present (Fig. 4).

The concentrations of Ti generally increased from the
bottom to 1952 AD, and then gradually decrease to the
surface, ranging from 6.4 to 7.6 g kg! (Fig. 5). The
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vertical changes of Fe and Mn concentrations were similar
to that of the Ti profile, Fe/Mn ratio varied inversely with
Mn concentration, ranging from 59.1 to 66.8 with a mean
of 62.0 (Fig. 5). Unlike the concentrations of terrigenous
elements, the contents of TOC, TN and TP remained
relatively stable before 1990 AD, and then significantly
increased to the present (Fig. 5). The profile shows low
organic carbon in the sediments, which varied between
0.9 and 4.7% (Fig. 5). The C/N molar ratio ranged from
8.0 to 11.6 with a mean of 9.5 (Fig. 5). Ti flux and organic
carbon burial rate revealed a generally increasing trend
over the profile, ranging from 1.1 to 22.0 g m™ yr! and
from 1.4 to 110.0 g m™2 yr!, with a relative high peak
during the mid-20" century.

DISCUSSION
Source of the siliciclastic materials

Determined by the geographic location and
geomorphological settings, detrital particles in Lake
Chenghai sediments would be expected to be mainly
derived from the hillsides transported by the precipitation
and seasonal rivers during the rainy season and
atmospheric dust deposits during the dry season. Previous
studies suggest that the three types of clastic sediments
exhibit different fractions of mixing of specific grain-size
components due to distinct transport dynamics. Therefore,
the grain-size composition is widely used to reflect the
sources and transport processes of lacustrine sediments
(Xiao et al., 2012; Dietze et al., 2014).
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Fig. 3. (a) Grain-size distribution curves of Core CH2012; (b) Grain-size vs. standard deviation diagram of the grain-size analysis.
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Fluvial and alluvial sediments are mainly composed
of saltation sand with dominant modal sizes of 100-400
um or even coarser and suspended fine silt with dominant
modal sizes of about 10-15 um (Sun et al., 2002; Xiao et
al., 2012). However, the grain-size distribution of fluvial
component would be highly modified by high and low
hydrodynamics during the deposition process in the lake
(Finney and Johnson, 1991). In general, the saltation sand
component occurs only in the littoral zone where shallow
water possesses high energy, and its relative abundance
decreases significantly as the water depth increases (Xiao
et al., 2012). In Lake Chenghai, the coarser component
with a dominant modal size of 13.2 pm, is consistent with
the fine modal size of fluvial or alluvial source, implying
that the component represents offshore suspended
components. The coarser sands, however, are generally
low in the lacustrine sediments, which might be related to
the rapid changes of water depth and decrease of
hydraulic conditions.

Primary aeolian sediments exhibit different fractions
of mixing of specific grain-size components due to
different sorting mechanisms during wind transport and
deposition processes (Sun et al., 2002; Vandenberghe,
2013). Theoretically, particles that are larger than 70 pm
would be transported in the range of hundreds of meters
or a few kilometers; the fraction of modal grain-size 10-
70 um is transported by near-surface winds to a distance
about 250 km; and the fine-silt and clay fraction is mainly
transported by upper-level air flow over relatively large
distance (Tsoar and Pye, 1987; Sun et al., 2008).
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fraction is dominant in marginal loess regions that
represents the transition to desert or dune belts; the
medium to coarse silt fraction is a typical component of
the loess from the Chinese Loess Plateau, central Asia and
Europe; sediment dominated by the fine silt and clay
particles is well identified in Red Clays from the Chinese
Loess Plateau, the northeast Qinghai-Tibetan Plateau and
central Europe, but only presents in small amounts in most
of the Quaternary loess (Vandenberghe, 2013). Similarly,
the lakes near the dust source area would receive more
sand fraction while the lakes in humid area are mainly
influenced by fine dust. For example, Dietze et al. (2014)
suggested that fine fraction had a mode between 2- 5 pm
over the Qinghai-Tibetan Plateau could be used to trace
the remote dust deposits. In Lake Chenghai sediments, the
finer component is similar to the dust component carried
by the high-level westerlies, which indicates that the finer
component might be of dust origin.

Globally, dust deposition rates are closely related to
distance to source region (Lawrence and Neff, 2009).
Assuming that the Ti concentration of aeolian dust equals
to the mean concentration of 5 mg/g, acolian Ti deposition
rates at sites located within or very near to primary source
areas are estimated to range from 0.4 to 2.6 g m2 yr .
While sites located further than 1000 km away from
source regions receive less than 0.005 g Ti from the dust
deposition per year (Lawrence and Neft, 2009). In Lake
Chenghai, Ti flux rates of particles <5 pm ranged from
0.6 to 12.7 g m=2 yr! with a mean of 6.0 g m2 yr!, which
was significant higher than the contemporary Ti flux rates
from aeolian dust. One possible explanation is that the
remote atmospheric dust can also be affected by post-
depositional reworking, and the grain-size composition of
primary dust did not change substantially by overland
flow (Vandenberghe, 2013). Therefore, it is difficult to
further distinguish transporting dynamics of the finer
component in this study.

Source of the organic matter

Geochemical characteristics of lacustrine sediment
organic matter are widely used to distinguish the
contribution of terrestrial and aquatic vegetation (Meyers,
1997 and 2003). Generally, phytoplankton is typically
marked by TOC/TN molar ratios between 4 and 10 due
to the high protein/low carbohydrate content; submerged
and floating aquatic macrophytes usually have TOC/TN
ratios between 10 and 20. In contrast, TOC/TN ratios of
vascular land plants often exceed 20 due to the high
carbohydrate content (Meyers, 1997; Talbot and Leaerdal,
2000). In Lake Chenghai sediment cores, the TOC/TN
ratios range from 8.0 to 11.6, with a mean of 9.2, distinctly
isolated from that of the vascular terrestrial plants. The
results are consistent with previous studies (Wan et al.,
2005; Zan et al., 2012). The study of soils in the Yunnan

Province, however, showed that mean TOC/TN ratios was
about 11.4+4.4 (Duan et al., 2014). The misleading
indications of bulk organic matter origin can be caused by
the typically measurement of the nitrogen contents that
combines both organic nitrogen and inorganic nitrogen
(Meyers, 1997). Regression of TOC versus TN in samples
from the cores showed a strong linear relationship (r>=
0.99, P<0.001), with an intercept about 0.04 (Fig. 6). This
suggests that the proportion of inorganic nitrogen can be
a large fraction of the total nitrogen content in the case of
sediments which have low organic matter content (Liu et
al., 2010; Nara et al., 2014; Sun et al., 2016). After the
simple correction by subtracting the intercept, although
TOC/TN ratios significantly increased and ranged from
11.3 to 14.3 with a mean of 12.3 (Fig. 5), the ratios are
still similar to that of aquatic-derived organic matter.
Therefore, organic matter in Lake Chenghai sediment
might derive from both of endogenous and exogenous
material, but dominated by autochthonous material. The
slightly higher TOC/TN ratios could also be attributed to
preferentially degradation of proteic components during
early diagenesis (Meyers, 1997; Talbot and Lardal, 2000;
Olsen et al., 2013).

Response of soil erosion to environmental change

As shown by the fluvial-Ti flux, the increasing trend
of soil erosion in the catchment of Lake Chenghai
compares well to the weakening of the Indian summer
monsoon during the past 160 years (Fig. 7; Duan et al.,
2004; Wang et al., 2005). Stable oxygen (8'*0) and
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Fig. 6. Scatter plot of Core CH2012 sedimentary TOC versus TN.
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hydrogen (8D) isotopes of precipitation in the Indian
monsoon area have been widely used as one of the most
reliable records representing summer monsoon intensity.
Speleothem 380 record from Dongge Cave in south
China and tree ring 6'*0 and 8D records from the
Qinghai-Tibetan Plateau suggest that the Indian summer
monsoon became progressively weaker since the late
Little Ice Age (Fig.7e; Wang et al., 2005; GrieBBinger et
al., 2011; Sano et al., 2012; Xu et al., 2012; An et al.,
2014). A general decreasing trend of monsoonal
precipitation over the past 160 years is also observed in
the accumulation rate in the Dasuopu ice core and the
varve thickness in Lake Xinluhai on the Tibetan Plateau,
which are also monsoon precipitation record (Fig. 7c;
Duan et al., 2004; Chu et al., 2011).

Heavy rainfall would enhance soil erosion over the
lake catchment in arid region and increase the transport
capacity of surface runoff (Liu ez al., 2007). However,
vegetation cover is also sensitive to precipitation in the
arid/semi-arid environments, where wetter climatic
conditions correspond to denser vegetation cover (Shen
et al., 2013). Vegetation density controls both
hydrological and mechanical properties of slope stability
in mountain areas, that is denser vegetation cover, plants
bind soil particles, to create bio-pores and form
mechanical barriers for soil and water movement,
resulting in less material transporting into the lakes
(Gyssels and Poesen, 2003; Istanbulluoglu and Bras,
2005). During drier periods, reduced vegetation cover in
the catchment exposes more soil superficial area, leading
to even relatively low-intensity rainfall could create a
stronger overland flow and more particles entering the
lake (Gyssels and Poesen, 2003; Istanbulluoglu and Bras,
2005). In addition, increasing temperature after the Little
Ice Age would enhance the rate of evaporation and reduce
the effective humidity, and further suppress the growth of
vegetation in the catchment (Mann et al., 1998).

The variation of lake surface area is suggested to be
an important factor determining the flux and grain-size of
siliciclastic materials in the lake, where small lake with
small basin having higher sedimentation rates (Xu ef al.,
2017). The lake level of Lake Chenghai has gradually
decreased about 30 m since the 19" century due to the
weakening of the Indian summer monsoon and increasing
temperature (Fig. 7h; Ji, 2014). However, its east-west
direction slopes are relatively large as it is formed by
tectonic activity. The grain-size compositions of the
sediments were generally stable until about 2003 AD,
which might be related to the 6.0-magnitude earthquake
occurred in 2001 in Yongsheng County considering the
error in 2!1°Pb dating. The effects of earthquake-triggered
shaking on high and steep slopes in mountainous areas
often lead to increase occurrences of secondary geo-
hazards such as debris flows, landslides and the formation

of unstable slopes, resulting more silt particles were
transported into the lake by surface runoff (Schwab et al.,
2009; Wilhelm et al., 2016). The general stable gain-size
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of sediments indicates that the variation of transporting
distance from the lake shore to the deposition site was
limited over the past 160 years. Therefore, the earthquake
may increase the flux of siliciclastic materials in Lake
Chenghai during the last decade and the lake size is
assumed to have had only a minor effect on the flux of
siliciclastic materials in Lake Chenghai.

In addition to environmental change, deforestation and
expanded agricultural land use associated with human
activities may also accelerate soil erosion in the catchment,
resulting in reduced protective capacity of land cover for
soils (Liu et al., 2007; Xu et al., 2017). The peak of the
fluvial-Ti flux between 1930s and 1950s was mainly due
to the agricultural development in the catchment. Since the
20" century, the population settled in this region has
continuously increased, and large scaled barren lands and
woodland were reclaimed as farmland to increase
agriculture yield during the first half of the 20" century
(Fig. 7 1,j; Yongsheng Statistics Bureau, 1986). The
significant increase in arable land rate dated to 1949 in
Yongsheng County demonstrated a large scaled land
reclamation during the 1950s (Fig. 7j; Yongsheng Statistics
Bureau, 1986). Then the arable land retained relatively
stable in spite of the continuous increasing population
during the past 50 years. This might be mainly due to the
changed agricultural method to improve grain yield per unit
area (Liu et al., 2007). Thus, the relative stable land use
pattern during the last 50 years also appears to be an
insignificant control on soil erosion than climate change.

Implication for organic carbon burial in lacustrine
sediment

Our study showed an increasing trend in organic carbon
burial in Lake Chenghai over the past 160 years,
particularly during the last three decades (Fig. 7b). This
phenomenon has been widely found in most lakes in China
and other parts of the world. The weighted mean burial rate
of organic carbon in Lake Chenghai during this period is
only about 15.1 g m™ yr!, which is much lower than the
estimate of 24.3 g m? yr! in the lake sediments of the
Yunnan-Guizhou Plateau Lake Region, 30.6 g m2 yr! of
the Eastern Plain Lake Region, 30.4 g m2 yr! of the Inner
Mongolian-Xinjiang Lake Region, and 25.4 g m2 yr! of
the Northeast Mountain and Plain Lake Region, but similar
to that of the Tibet Plateau Lake Region (14.3 gm? yr') in
China (Zhang F. et al., 2017). On the global scale, even
larger magnitude variation of organic carbon burial rate in
the lake and reservoir sediments was observed (from 0.2 to
about 17,400 g m?2 yr'), with high values in small
agricultural ponds and artificial reservoirs (Mendonga et
al., 2017). This is mainly due to the differences in
geographical location, land use in the catchment, nutrient
input and limnological parameters.

On the long-term scale, the organic matter burial rates

were mainly determined by catchment disturbance.
Changes in terrestrial sediment delivery can influence
lacustrine organic carbon burial in several processes (von
Wachenfeldt and Tranvik, 2008; Sobek ez al., 2009;
Tranvik et al., 2009; Dietz et al., 2015). First, elevated
sediment delivery via erosion would enhance terrestrial
carbon loading to the lake environment (Dietz et al.,
2015). The increasing TOC/TN molar ratio before 1960
AD was consistent with the trend of fluvial-Ti flux,
indicating that increasing soil organic matter was
transported to the lake. Then the relative low TOC/TN
molar ratio of sediments might be determined by the
gradual eutrophication of Lake Chenghai which
significantly enhanced aquatic primary productivity (Zan
et al., 2012). Furthermore, mineral grains may increase
the transport of organic matter from surface waters to lake
floor, assuming that organic flocculates bind to suspended
inorganic particulates or sinking particles scavenge
organic material from the water column (von Wachenfeldt
and Tranvik, 2008). In addition, higher flux of siliciclastic
materials may also increase organic carbon burial
efficiency, elevated sedimentation lead to quicker
isolation of deposited organic material from the sediment
surface, reducing the duration of its exposure to oxygen
and the possibility of resuspension into oxic zones (von
Wachenfeldt and Tranvik, 2008; Sobek et al., 2009).
Climate-related variables and eutrophication can further
modify organic carbon burial patterns through their
influence on primary productivity and burial efficiency.
Although higher temperature favors higher rate of
decomposition of organic matter in the water column
(Gudasz et al., 2010), eutrophication might elevate the
aquatic primary productivity, leading to increased TOC
content at lakes (Cook et al., 2012; Shen et al., 2005). The
rapid rise of TOC content and burial rate in Lake Chenghai
sediment since the late 1980s was consistent with the period
of widespread use of commercial fertilizers (Fig. 7k),
discharge of wastewater and artificial cultivation of
Spirulina (Zan et al., 2012). Furthermore, changing bottom
water oxygen concentration caused by climate change and
eutrophication might also influence post-depositional
diagenesis of the organic matter. Fe/Mn ratio has been used
to reflect changing redox conditions in lakes, due to more
rapid reduction of Mn than Fe under anoxic conditions
(Nacher et al., 2013; Zhu et al., 2009). Higher Fe/Mn ratio
indicated lower O, concentrations in the bottom water,
while lower ratio occurs under oxic conditions. The
decreasing O, concentrations in the bottom water were
closely related to the drop of lake level in oligotrophic
status before 1950 AD, resulting in more degradation of the
organic matter (Fig. 7g). In contrast, increased primary
productivity and therefore O, consumption during organic
matter mineralization in deeper water would lead to a
stronger release of Mn compared to Fe from the sediment-
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water interface (Fig. 7g). Although lacustrine sediments are
efficient at burying organic carbon, some recent studies
showed that a considerable fraction of organic matter in the
sediments which are younger than 5-10 years would be
mineralized prior to long-term burial (Galman et al., 2008;
Sobek et al., 2009). Post-depositional mineralization is
largely controlled by organic matter contact with O,
(Anderson et al., 2014). The anoxia condition caused by
eutrophication can lead to reduced O, exposure time and
thus less degradation of post-depositional organic matter in
Lake Chenghai. Therefore, Lake Chenghai may play a
more important role in terrestrial carbon cycling under
eutrophic status.

CONCLUSIONS

A sediment core (CH2012) spanning the last 160 years
was retrieved from Lake Chenghai in southwest China in
order to investigate the response of catchment soil erosion
and organic carbon burial to climate change. The result of
grain-size vs. standard deviation method shows that the
lacustrine deposits contain two sensitive fractions with a
modal size of 13.2 and 2.2 pm respectively, and coarser
fractions with the modal size of 13.2 um is related to fluvial
processes and sensitive to the soil erosion in the catchment.
The increasing intensity of soil erosion is mainly
determined by the weakening of the Indian summer
monsoon and global warming, which resulted in decreased
vegetation cover and reduced soil cohesion. Intensive
human activities such as deforestation and land reclamation
during the mid-20™ century might also induce soil loss in
Lake Chenghai catchment. The organic carbon burial rate
increased from 1.4 g m™ yr! in the late 19" century to 110.0
g m2 yr! at the present. The large magnitude variation in
organic carbon burial rate is attributed to the catchment
disturbance, although climate change and eutrophication
can further modify organic carbon burial patterns.
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