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ABSTRACT

Terrestrial allochthonous organic matter represents a structuring element and an important source of energy and carbon to fauna
in small forested streams. However, the role of this matter as a food resource for benthic macroinvertebrates, and consequently, for
shredders and their performance in riverine processes, is not clear in low-order tropical streams. Aiming to investigate the relation-
ship between shredders and leaves, we analyzed along a gradient of 8-93% canopy cover biomass and abundance of shredders, ac-
cumulated leaves and breakdown rates of local leaves to verify if these parameters were related to shade conditions and to each
other. Three hypotheses were tested: i) shredder biomass, accumulated leaves and breakdown rates are related to canopy cover and
exhibit higher values in shaded sites; ii) shredder biomass is positively related to accumulated leaves and breakdown rates; and iii)
due to the relatively large body size of the important shredders, the association of shredders with leaves and importance to leaf
processing should be better expressed in terms of guild biomass than abundance. Shredder biomass varied between 846 and 1506
mg dry mass (DM) m? and accumulated leaves varied between 479 and 1120 g ash free dry mass (AFDM) m 2 across sites. Leaf
breakdown rate (k), the only measured variable that varied significantly among sites, varied between -0.0015 and -0.0238 day .
Neither shredder biomass nor leaf biomass were associated with the shading gradient. On the other hand, shredder abundance and
biomass, mainly represented by Triplectides (Trichoptera, Leptoceridae), was positively related to accumulated leaves within sites
and to breakdown rates assessed by leaf packs. Leaf breakdown, as assessed by the experimental leaf packs, was associated with
shredder biomass, but not with shredder abundance. This result suggests that macroinvertebrates are important for leaf detritus
processing and that their biomass reflects their activity, presumably because it is related to their secondary production and perhaps
non-consumptive action. Their activity was observed at the scale of leaf packs and not at the scale of variation in canopy cover be-

cause apparently canopy did not modulate availability of leaves, which were apparently not limiting to the shredders.
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INTRODUCTION

About 90% of terrestrial primary production falls di-
rectly into the dead organic matter pool (Cebrian, 1999;
Abelho, 2001), becoming available to the so-called
“brown food webs” (Kaspari, 2004). Especially in low-
order streams covered by dense riparian vegetation, al-
lochthonous organic matter represents the main resource
for aquatic fauna (Wallace ef al., 1997). Leaves compose
the major fraction of allochthonous organic matter enter-
ing in streams (Franga ef al., 2009; Gongalves et al., 2014;
Bambi et al., 2017) and once in the lotic environment,
fauna colonize and start the process of leaf breakdown
(Gessner et al., 1999; Graga, 2001; Tank et al., 2010).

Benthic macroinvertebrates have been found to be
positively related to the availability of allochthonous or-
ganic matter in lotic ecosystems (Egglishaw, 1964;
Gonzalez and Graga, 2005; Mbaka et al., 2015). Leaves
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and other categories of allochthonous organic matter can
provide food and additional resources such as substrate
and refuge from predators and water currents (Inoue and
Nakano, 1998; Braccia and Batzer, 2001). Also, terrestrial
material can accumulate fine particulate organic matter
and nutritious biofilms formed by microorganisms which
represent food resources for benthic macroinvertebrates
(Hax and Golladay, 1993; Crook and Robertson, 1999;
Dudgeon and Wu, 1999; Eggert and Wallace, 2007).

Leaves are broken down by physical abrasion, leach-
ing of soluble compounds and through micro and macro-
fauna consumption (Gessner et al., 1999; Jugnia et al.,
2000; Graga, 2001). Macroinvertebrate shredders, organ-
isms that feed directly on leaf tissues while converting
coarse matter into small particles, are important in litter
breakdown in many systems (Webster and Benfield, 1986;
Wallace and Webster, 1996; Graga ef al., 2015).

Due to the quantitative dominance of allochthonous
matter over autochthonous production in small low-order
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streams, one of the principal tenets of the River
Continuum Concept (RCC; Vannote et al., 1980) is that
fauna in these parts of the streams rely mainly on terres-
trial resources. However, despite the applicability to tem-
perate forested headwaters (Fisher and Likens, 1973;
Wallace et al., 1999), RCC is a controversial model in
tropical running waters. Evidence from global studies in-
dicates high variability in shredder occurrence and in
breakdown rates across tropical sites (Boyero et al., 2012,
2015), which corroborates contrasting results obtained in
tropical regions. A growing body of evidence emphasizes
the importance of algal carbon in tropical food webs of
forested small streams (Salas and Dudgeon, 2001; Mantel
et al., 2004; Brito et al., 2006; Li and Dudgeon, 2008; Lau
et al., 2009; Neres-Lima et al., 2016; Brett ef al., 2017)
and it has been claimed that the contribution of macroin-
vertebrate shredders to leaf breakdown is small in certain
tropical running waters due their scarcity (Dudgeon and
Wu, 1999; Dobson et al., 2002; Gongalves et al., 2006b,
2007; Ardén and Pringle, 2008; Alvim et al., 2015). On
the other hand, there is contrary evidence of high diversity
and abundance of macroinvertebrate shredders, high sec-
ondary production and importance on leaf breakdown
(Cheshire et al., 2005; Camacho et al., 2009; Yule et al.,
2009; Encalada et al., 2010; Masese et al., 2014; Tonin et
al.,2014; Andrade et al., 2017; Neres-Lima et al., 2017).

Independently of the source of carbon supporting
fauna, we propose that, in part, shredders and their role
have been overlooked in the tropics. Methodological fac-
tors could underestimate shredder importance in tropical
running waters: benthic macroinvertebrates are frequently
assigned to functional feeding groups according to clas-
sifications proposed for temperate organisms (Camacho
et al.,2009). Thus, certain organisms, abundant in tropical
running waters and not usually classified as shredders,
like Leptophlebiidae, could be involved in leaf processing
(Bello and Cabrera, 2001; Andrade et al., 2017). Also, the
scarcity of data based on biomass could hinder the inves-
tigation of the role of shredders in tropical streams since
common tropical shredders, like caddisflies, have large
bodies and data based on abundance can underestimate
their importance (Tonin et al., 2014).

Therefore, this study examined benthic macroinverte-
brate biomass, leaf standing stock and breakdown rates of
the most abundant riparian species along a canopy cover
gradient. Our objectives were i) analyze patterns in shred-
der biomass, accumulated leaves and leaf breakdown rates
along a canopy cover gradient; ii) investigate the associ-
ation of macroinvertebrate shredders with leaf standing
stock and leaf breakdown; and iii) verify if shredder as-
sociation with leaves and contribution to leaf breakdown
is more evident in terms of number of individuals or bio-
mass. We hypothesized that shredder biomass, accumu-
lated leaves and leaf breakdown rates follow a gradient in

canopy cover, and that shredders are positively related to
leaf quantity and to leaf breakdown. We also hypothesized
that association between shredders and leaves will be
clearer in terms of biomass than in terms of abundance.

METHODS
Study site

The study was conducted in Cérrego da Andorinha and
Rio Barra Pequena, small third-order streams located in a
well-preserved dense Atlantic rainforest within the State
Park of Ilha Grande Island in Rio de Janeiro State, Brazil
(23°04° to 23°14°S and 44°05’ to 44°23°W; Fig. 1). Average
annual temperature is 23.2°C and average annual precipi-
tation, 2071 mm, according to the nearest meteorological
station situated in Angra dos Reis municipality (data from
December/2015 - November/2016). Total catchment of
Corrego da Andorinha is ~1260 ha and the highest point is
1030 m above sea level. Rio Barra Pequena has a catch-
ment area of ~566 ha. Both streams have a steep bed slope
for most their courses, discharging into small tidal estuaries
without meanders or transition zones. Substrate is generally
well embedded, with large boulders and some sandy
stretches. The geology is principally Pre-Cambrian granite;
the water chemistry is oligotrophic (total-N=180 pg L,
total-P=10 pg L', pH=6.6) and did not change along the
stream. Conductivity is 27 uScm™ in Cérrego da Andorinha
and 33 uScm! in Rio Barra Pequena.

We selected six sites - one in Rio Barra Pequena, BP,
four in Coérrego da Andorinha - JAR (Jararaca), CHA
(Characidium), LAM (Lambari) and CAP (Capivara) -
and VAL (Valium), a first order tributary of Corrego da
Andorinha (Fig. 1 and Tab. 1). Sites were selected follow-
ing a canopy cover gradient that varied between 8% and
93%. VAL, BP and JAR showed higher canopy cover
mean values (93, 83 and 73%) and LAM and CAP, the
lower mean values (12% and 8%) and CHA was interme-
diate (55%). Canopy cover was measured using a spheri-
cal densitometer Model-C (Forest Densiometers,
Bartlesville, OK, USA). Along 10 equally-spaced transect
transects distributed in a 10-m reach, we averaged four
readings facing north, south, east and west. Discharge was
estimated on two occasions during the leaf breakdown ex-
periment (except in JAR). In each site, we conducted a
leaf breakdown experiment over 36 days during January
and February/2016. At the same six sites, we sampled
benthic macroinvertebrates and leaf standing stock in two
campaigns during the leaf breakdown experiment.

Shredder biomass and leaf standing stock

We collected eight samples of benthic organic matter
and associated macroinvertebrate where leaves had accu-
mulated naturally (“litter-banks”) - most of them were in



Relationships between shredders and leaves along a shading gradient 111

pools of slow-moving water - using a stovepipe corer (314 The material inside the bucket was elutriated and poured
cm?). We inserted the corer into the substrate and manu- through a sieve (250 um mesh). The procedure of elutri-
ally collected all leaves, debris and coarse material from ation was repeated several times using fresh stream water
the corer and placing them in a bucket. We bailed approx- until rinse water was clear. The material was stored in a
imately 20L of water from the corer to the bucket to col- plastic bag filled with fresh stream water to maintain or-
lect suspended organic matter and macroinvertebrates. ganisms alive. We washed organic matter samples through
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Fig. 1. Map of the study site at Ilha Grande, Rio de Janeiro.

Tab. 1. Characteristics of the sites.

Site code Distance from Altitude Discharge Canopy Leaf input* Presence of
mouth (m) (m asl) (Ls™) cove r(%) (AFDM g m macro-fauna
month™)
Mean SD Mean Mean SD
VAL Valium - 53 9.97+3.19 93 129.46+10.45 M,P, T
JAR Jararaca 2231 254 91.10 73 86.19+31.76 T
BP Barra Pequena 236 34 135.50+3.53 83 - M, P
CHA Characidium 1240 83 432.80+42.56 55 22.38+4.64 M,PF, T
LAM Lambari 913 43 531.55+177.04 12 44.78+0.05 M, F
CAP Capivara 497 36 565.61+190.04 8 14.15+1.30 M, F

*Data from January and February/2014 (Lisboa, 2017); E fishes; M, Macrobrachium (shrimp); P, Potimirim (shrimp); T, Trichodactylus (crab).
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sieves to separate macroinvertebrates and organic matter
into coarse (>1000 pum) and fine (>250 pm) fractions.
After removing macroinvertebrates (picked alive and
fixed in ethanol 70%), leaves were separated for leaf
standing stock estimate. The leaves were dried at 55°C
for 48 h, weighed and then combusted in a muffle furnace
at 500°C for 4 h to obtain ash free dry mass (AFDM).

To separate small macroinvertebrates, the fine organic
matter fraction was subsampled to a maximum of 1/8 of
the sample, depending on the amount of material. We
sorted the preserved macroinvertebrates under a stereomi-
croscope at 40x magnification. All the organisms were
identified to the lowest possible taxonomic level with a
local key (Mugnai et al., 2009) and classified as shredders
or non-shredders according to previous classifications and
evidence of food consumption obtained in tropical
streams (Cheshire et al., 2005; Rueda-Delgado et al.,
2006; Tomanova et al., 2006; Chara-Serna, 2010; Ramirez
and Gutiérrez-Fonseca, 2014). Leptophlebiidae was as-
signed as shredder due to its terrestrial carbon assimilation
in Corrego da Andorinha (Neres-Lima et al., 2016) and
role in leaf breakdown (Andrade et al., 2017). All organ-
isms were measured (body length) to obtain biomass es-
timates in mg dry mass (DM) m2, using taxon-specific
length-mass relationships (Benke et al., 1999). Abun-
dance of each taxon was estimated to number of individ-
uals m? and biomass was calculated as a product of
abundance and average individual body mass, for each
taxon and sample. The estimated biomasses of different
taxa were then used to estimate total macroinvertebrate
and shredder biomasses.

Leaf breakdown experiment

At each site, we collected fallen leaves on rocks and
boulders following two separate transects of ~5 m on both
margins. Leaves were taken to the laboratory and sepa-
rated to identify the three most abundant local species in
each site (Supplementary Tab. 1). After air-dried and
weighed, ~3 g of leaves were fastened together using
paper clips to form bagless packs. Each pack comprised
the three most abundant species of each site (Supplemen-
tary Tab. 1). Leaf species 1, most abundant, corresponded
to 50% of packs (~1.5 g) and the same weight of leaf
species 2 and 3 (~0.7 g) completed the mixed packs.
Three groups, here referred to as blocks, of five packs at-
tached to a cord were then incubated in litter-banks placed
~1 m apart in all sites.

After 2, 6, 11, 27 and 36 days of incubation, three
packs, one of each block were randomly retrieved from
all sites. The material was stored in plastic bags and taken
to the laboratory for analysis of leaf mass loss and bio-
mass of associated shredders. Leaves were gently washed
under running water over a 250-um mesh sieve to remove
detritus and retain associated benthic fauna (preserved in

ethanol 70%). Leaf material was oven-dried (72 h, 55°C)
and ashed (4 h, 500°C) to estimate the remaining AFDM
and breakdown rates (k) of leaf packs.

Shredder macroinvertebrates associated with leaf
packs were identified and measured for biomass estimates
as previously detailed for organisms sampled with
stovepipe.

Statistical analyses

We calculated breakdown rate using the model M=M,
e, where M, represents mass (g, AFDM) after time t
(days), M, represents initial mass and kis the rate of leaf
breakdown (per day; Olson, 1973). M, was calculated as
AFDM using DM:AFDM relationship established for
each different combination of leaves used in the experi-
ment after combustion of retrieved packs. For each site
and cord, £ was calculated by linear regression of the nat-
ural log of proportion of remaining mass by time (Ben-
field, 2007). We included the constant of regression and
did not include time zero data, which implies excluding
the initial time interval (the initial phase of processing can
be faster due physical process of leaching, whereas we
aimed to measure leaf processing).

Overall variation in leaf standing stock and breakdown
rates among sites were analyzed by one-way ANOVA. To
analyse differences in shredder abundance and biomass
among sites and the association between shredders and
leaf standing stock, we performed an ANCOVA using
shredder abundance or biomass as dependent variable,
leaf AFDM as continuous variable and site as fixed factor.
To analyse the relationship between breakdown rates and
biomass of shredders associated with experimental leaf
packs, we regressed breakdown rates against shredder
biomass (means per block). All statistical analyses were
conducted using Systat 12.

RESULTS

Leaves and shredder biomass along a canopy cover
gradient

The standing stock of leaves varied between 479+422
and 1120+960 g AFDM m? (mean +£SD, n=8), but quan-
tity of material did not differ significantly among sites
(ANOVA, F;,,_1.49, P=0.20), nor was it associated with
canopy cover (Fig. 2).

Shredder biomass represented ~45% of total benthic
macroinvertebrate biomass in accumulated litter and
ranged from 846+891 to 1506+775 mg DM m in the dif-
ferent sites but showed no apparent relationship with
stream size or canopy. Shredder taxa found were the cad-
disflies Triplectides Kolenati, 1859 (Trichoptera, Lepto-
ceridae), and Phylloicus Mueller, 1880 (Trichoptera,
Calamoceratidae), the leaf miner Stenochironomus
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Kieffer 1919 (Diptera, Chironomidae), and leptophlebiids,
mainly Farrodes Peter, 1971 (Ephemeroptera). In all sites,
except CHA, Triplectides responded for more than half of
shredder biomass (Fig. 3).

The abundance and biomass of shredders were posi-
tively related to leaf standing stock within sites (Tab. 2
and Fig. 4), but there were no significant differences be-
tween sites (Tab. 2).

Leaf breakdown

Breakdown rates of experimental leaf packs revealed
different patterns across sites, but did not exhibit any ten-
dency related to riparian cover (Figs. 5 and 6). In CHA,
leaves lost ~30% of mass by day 11 of the experiment,
when, in most other sites, leaf mass loss was less than
20% (Fig. 5). JAR and BP exhibited slow mass loss,
~25% until day 36, and in LAM, leaf mass loss was less
than 20% at the end of experiment (Fig. 5). Breakdown
rates showed variation ranging from -0.0015+0.0013 to
-0.0238+0.0055 d-! (Fig. 6), with significant difference
among sites (ANOVA, F5 ,.14.09, P<0.001). The fastest
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Fig. 2. Leaf standing stock in litter-banks (error bars=SD, n=8).
Sites are ordered in increasing stream size.

rate was observed in CHA (k=-0.0238+0.0055 d™), sig-
nificantly different to breakdown rates observed in JAR,
BP, LAM and CAP (Fig. 6).

VAL also showed high breakdown rate (-0.0164+
0.0025 d™), significantly higher than observed in BP and
LAM, where we observed the slowest rates (Fig. 6). A
total of 534 shredders were found associated with leaves
in retrieved packs. The biomass of these organisms exhib-
ited significant relation with leaf breakdown (F, ;;_13.4,
P=0.002; Fig. 7), but this correlation was more evident in
VAL, CHA and CAP. Oppositely, shredder abundance was
not significantly related to breakdown rates (F, ;4-3.34,
P=0.086).

DISCUSSION
Longitudinal patterns in shredders and leaves

Contrary to some studies conducted in tropical ecosys-
tems, we did not detect a pattern of decrease in shredder
biomass along a longitudinal gradient (Greathouse and
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Fig. 3. Biomass of main shredder taxa in studied sites (mean,
n=8).

Tab. 2. Analysis of covariance of shredder abundance and biomass with leaf biomass and sites.

Dependent variable Source of variation  Sum of squares df Mean square F-ratio P
Shredder abundance Leaves 5048 1 5048 4.69 0.037
Sites 2656 5 531 0.49 0.779
Leaves*sites 4865 5 973 0.90 0.489
Error 38,735 36 1075
Shredder biomass Leaves 7692 1 7692 4.39 0.043
Sites 5206 5 1041 0.59 0.705
Leaves*sites 13,690 5 2738 1.56 0.196
Error 63,110 36 1753

df, degrees of freedom.
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Pringle, 2006; Jiang et al., 2011). We also did not observe
a positive relationship between canopy cover, accumu-
lated leaves and breakdown, as had been expected. The
stock of litter in streams can often reflect the organic mat-
ter input from adjacent vegetation (Bilby and Likens,
1980; Swanson et al., 1982), and exhibit similar patterns
(Bambi et al., 2017). However, the presence and persist-
ence of terrestrial material in the streambed is also related
to several factors including composition, organization and
densities of trees, seasonality and channel morphology
(Fleituch, 2001; Gongalves et al., 2006a; Franca et al.,
2009; Tank et al., 2010; Flores et al., 2013; Lisboa et al.,
2015; Bambi et al., 2017). Therefore, even with variation
among sites in the degree of canopy cover and leaf input
(Tab. 1), the lack of substantial differences in leaf standing
stock indicates that canopy cover did not determine pat-
terns in organic matter distribution in stream channel. In
Corrego da Andorinha and Barra Pequena, channel mor-
phology is possibly a more important factor governing the
accumulation of litter.

In an Atlantic Forest environmental quality assess-
ment, Baptista et al. (2007) concluded that shredder abun-
dance was related to reference sites. In general, reference
sites exhibit features that match with shredders demands,
like litter accumulation and lower temperatures due ripar-
ian vegetation presence. Accumulated allochthonous or-
ganic matter can provide food for shredders and the
positive correlation between these elements is well-estab-
lished in temperate ecosystems (Richardson, 1992;
Wallace et al., 1999; Rowe and Richardson, 2001;
Gonzalez and Graga, 2005; Flores et al., 2013). In this
manner, as our studied sites are in the same well-pre-
served rainforest and accumulated leaves were not re-
stricted to dense riparian covered sites, shredder biomass
and abundance seem not restricted as well.

We can also observe that litter was abundant at all sites
relative to the biomass of shredders, and was probably not
limiting for their growth and population density. Thus,
shredders and other macroinvertebrates may be limited by
predators, as has been observed in exclosure experiments
in these streams (Moulton et al., 2004; Andrade et al.,
2017). If this were the case, we could expect that shred-
ders would seek out the most nutritious and easily assim-
ilated leaves, and thus their action would be observed at
the level of leaf packs (see below).

Shredders, accumulated leaves and breakdown rates

We observed that shredder biomass and abundance
were related to quantity of leaves of samples within sites
(Tab. 2, Fig. 4). We expected this relationship based on
the simple assumption that leaves provide substrate and
that number of organisms would increase as substrate
availability increased. Only if substrate were limited and
the pool of potential shredders constant might we expect

that shredder abundance would not increase with substrate
availability.

On the other hand, shredder biomass per leaf pack was
positively associated with leaf processing (Fig. 7). This as-
sociation was evident in VAL, CHA and CAP, where leaf
breakdown rates were higher. Interestingly, shredder abun-
dance per leaf pack did not show a significant relationship
with leaf breakdown rate, which implies the importance of
measuring biomass as an indicator of shredder activity.
Biomass, as a variable directly associated with secondary
production, can potentially better illustrate the role of or-
ganisms in processes because secondary production inte-
grates, among other factors, resource consumption and
growth rate (Benke, 2010; Benke and Huryn, 2010).

Although the macrofauna of crustaceans and fish could
potentially affect leaf breakdown, the pattern of leaf break-
down we observed did not correspond to presence or ab-
sence of the different macrofauna (cf Tab. 1 and Fig. 6).
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Previous research in these streams showed a strong indirect
relationship of sites with fish and the density of periphyton
(Moulton et al., 2010). Apparently, the presence of fish had
an inhibiting effect on grazing shrimp (Potimirim), such
that sites with fish had greater density of periphyton. In the
current case, however, the sites with fish (LAM and CAP)
showed no reduction of leaf processing that could be attrib-
uted to an inhibition of shredders. Other possible direct or
indirect interactions might have involved Macrobrachium
shrimps which were shown to reduce leaf processing pre-
sumably by inhibiting shredding insects (Andrade et al.,
2017). Again, the site without Macrobrachium, JAR, did
not show increased leaf processing.

The leaf packs of the leaf breakdown experiment were
made from the three most abundant species of each site.
Thus, part of the variation among sites could have come
from differences in rates of breakdown of the different
species. At site CHA, which showed the fastest break-
down of leaf packs, the most abundant tree species was
Ficus insipida Willd. (Moraceae), which exhibited fast
breakdown rates in other studies (Rosemond et al., 1998;
Ardon et al., 2009; Rincén and Santelloco, 2009). Leaves
of F. insipida are characterized by low lignin and polyphe-
nol content (Ardoén et al., 2006; Rincén and Santelloco,
2009), and are thus a potential high-quality detritus for
consumers. In VAL and CHA, where we observed faster
leaf breakdown rates, Leptophlebiidae contributed an im-
portant fraction of shredder biomass. This observation
supports previous local findings that leptophlebiid
ephemeropterans are associated with leaf mass loss
(Andrade et al., 2017). In JAR and CAP, where breakdown
rates can be classified as intermediate and fast, according
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classifications of Petersen and Cummins (1974) (rapid, &
>0.01 d'; intermediate, 0.005 d' < £ <0.01 d!; and slow,
k<0.005 d), we observed association between shredders
and accumulated leaves (Fig. 4). In these sites, it was pre-
viously observed that Triplectides and Phylloicus diet is
not restricted to allochthonous resources, and further, au-
tochthonous resources can correspond to a third (JAR) to
a half (CAP) of the food assimilated by these caddisflies
in Corrego da Andorinha (Neres-Lima et al., 2016). In
JAR, despite high canopy cover, local fauna is highly sup-
ported by autochthonous carbon (Neres-Lima et al.,
2016). These observations match with the prediction that
even highly covered tropical streams have enough light
incidence to sustain a reasonable level of primary produc-
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tion (Bunn et al., 1999a, 1999b; Lau et al., 2009). In this
manner, we speculate that shredders may be consuming
some autochthonous carbon along with their predominant
diet of leaves and that they might benefit from algae at-
tached to leaves (Guo et al., 2016).

In BP and LAM, where leaf mass loss was almost ab-
sent, shredder biomass per leaf pack seems weakly related
to breakdown rates (Fig. 7). This observation could indi-
cate that shredders rejected the most abundant local
leaves, consuming preferentially other leaves due to their
food selection behavior (Casotti et al., 2015). The lack of
relationship between shredder biomass and leaf break-
down suggests that shredders were exploiting other food
categories. Laboratory experiments indicated that four of
five studied species, usually classified as shredders, ex-
hibited generalist behavior, whereas only one species
grew up consuming exclusively coarse organic matter
(Mihuc and Mihuc, 1995). Additionally, stable isotopes
and gut content analyses revealed that organisms classi-
fied as shredders can behave as generalists, consuming
coarse and fine organic matter and periphyton (Tomanova
et al., 2006; Leberfinger and Bohman 2010; Leberfinger
et al., 2011; Callisto and Gracga, 2013; Ferreira et al.,
2015), including in a study conducted in Coérrego da
Andorinha (Neres-Lima et al., 2016). In this manner, the
interaction of shredders and leaves as food resource could
be mainly related to litter and algal resources quality than
to leaf quantity or canopy cover shading.

CONCLUSIONS

We conclude that despite the absence of a linkage be-
tween canopy cover and shredder abundance and biomass,
shredders were associated with leaf quantity within sites
and with processing of leaf packs, and thus they appear
important for leaf processing. However, this linkage be-
tween shredders and accumulated leaves and breakdown
was not evident in all sites, which indicates that other fac-
tors (e.g. litter and algal resource quality and availability)
can be more relevant and determinant in this interaction.
Also, shredder biomass rather than abundance was related
to leaf breakdown, suggesting that analyses based on bio-
mass may reveal their importance in this ecosystem
process. Leptophlebiid ephemeropterans are not generally
classified as shredders, but evidence from other studies
and their distribution here indicate them as shredders, em-
phasizing the importance of accurate classifications into
functional feeding groups based on regional studies.
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