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A non-deterministic approach to forecasting the trophic evolution of lakes
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ABSTRACT

Limnologists have long recognized that one of the goals of their discipline is to increase its predictive capability. In recent years,
the role of prediction in applied ecology escalated, mainly due to man's increased ability to change the biosphere. Such alterations
often came with unplanned and noticeably negative side effects mushrooming from lack of proper attention to long-term consequences.
Regression analysis of common limnological parameters has been successfully applied to develop predictive models relating the vari-
ability of limnological parameters to specific key causes. These approaches, though, are biased by the requirement of a priori cause-
relation assumption, oftentimes difficult to find in the complex, nonlinear relationships entangling ecological data. A set of quantitative
tools that can help addressing current environmental challenges avoiding such restrictions is currently being researched and developed
within the framework of ecological informatics. One of these approaches attempting to model the relationship between a set of inputs
and known outputs, is based on Genetic Algorithms (GA) and Genetic Programming (GP). This stochastic optimization tool is based
on the process of evolution in natural systems and was inspired by a direct analogy to sexual reproduction and Charles Darwin's
principle of natural selection. GP is an evolutionary algorithm that uses selection and recombination operators to generate a population
of equations. Thanks to a 25-year long time-series of regular limnological data, the deep, large, oligotrophic Lake Maggiore (Northern
Italy) is the ideal case study to test the predictive ability of GP. Testing of GP on the multi-year data series of this lake has allowed us
to verify the forecasting efficacy of the models emerging from GP application. In addition, this non-deterministic approach leads to the
discovery of non-obvious relationships between variables and enabled the formulation of new stochastic models.
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INTRODUCTION successfully applied to identify the variables most suitable
to predict the evolution of the specific components of lake
ecosystems. Recent examples are, for instance, the pre-
diction of the cyanobacterial biomass in relation to cli-
mate change (Beaulieu ef al., 2013) and the modeling of
the main driving force of zooplankton dynamics (Perhar
et al., 2013), a task intrinsically more difficult than mod-
eling an assemblage of unicellular algal species. These
approaches, though, are biased by the requirement of a
priori cause-relation assumption, oftentimes difficult to
find in the complex, nonlinear relationships entangling
ecological data. In addition, it is often difficult to satisfy
the restrictive assumptions required by conventional para-
metric approaches.

One promising set of quantitative tools that can help ad-

Limnologists have long recognized that one of the goals
of their discipline is to increase its predictive capability (Pe-
ters, 1986, 1991). In recent years, the role of prediction in
applied ecology grew up, mainly due to man’s increased
ability to change the biosphere. The man-induced alter-
ations often came with unexpected and remarkably nega-
tive side effects arising from the lack of adequate attention
to long-term consequences. The current threat to biodiver-
sity and global climate change are paradigmatic examples
of such negative effects. Their mitigation requires actions
based on efficient models for ecological forecasting (Clark
et al., 2001). Past applications of predictive limnology
proved fundamental, for example, to eutrophication control.

Vollenweider (1968), searching for effective responses to
the eutrophication problem, formulated successful deter-
ministic models for lake management that predict lake total
phosphorus concentrations as a function of lake morpho-
metric/hydraulic characteristics. Dillon and Rigler (1974)
among others developed regression models to predict the
change in phytoplankton standing crop with a given change
in nutrient loading.

Following this path, the regression analysis has been
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dressing current environmental challenges avoiding such
restrictions is currently being studied and developed within
the framework of ecological informatics. This is an inter-
disciplinary framework promoting the use of advanced
computational technology to reveal ecological processes
and patterns across levels of ecosystem complexity. Ma-
chine Learning (ML) is a rapidly growing area of eco-in-
formatics that is concerned with identifying structure in
complex, often nonlinear data and generating accurate pre-
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dictive models. Supervised learning is a form of machine
learning that aims to model the relationship between a set
of inputs given the known outputs. This approach finds its
implementation in a huge variety of algorithms. Among
these we can find evolutionary algorithms such as Genetic
Algorithms (GA) and Genetic Programming (GP). Evolu-
tionary algorithms are stochastic optimization heuristics
based on mimicking the process of evolution in natural sys-
tems and are inspired by a direct analogy to sexual repro-
duction and Charles Darwin’s principle of natural selection.
GP and GA use selection and recombination operators to
generate a population of solutions to a problem’s instance.
These evolve over generations where each individual has
a chance to survive or reproduce proportional to its fitness,
i.e. how well it satisfies the problem. Given enough gener-
ation, these algorithms converge to an optimal solution
(Poli, 2001; Recknagel, 2001). The best solution, i.e. the
best predicting equation, can be tested on a subset of data
from the time series used to construct the model. The full
parallelism between Nature and Computer is summarized
in Tab. 1 (from Cagnoni and Poli, 2006). The growing use
of these methods in recent years is the direct result of their
ability to model complex, nonlinear relationships in eco-
logical data without having to satisfy the restrictive assump-
tions required by conventional, parametric approaches
(Guisan and Zimmermann, 2000; Olden and Jackson, 2002;
Elith et al., 2006). As a result, eco-informatics techniques,
and in particular GA and GP, have been often applied in
limnology to unravel connections between variables con-
trolling the algal population dynamics and to forecast their
short and long term evolution (Recknagel et al., 2006; Kim
et al., 2012; Recknagel et al., 2013). GP applications to
trophic levels higher than phytoplankton are less abundant
and more frequently utilized in marine environment (Perhar
et al., 2013; Marini and Conversi, 2012).

This paper contains a brief introduction to (GP) and
an evaluation of its use in forecasting time series of or-
ganic carbon production in a lake for which long time-se-
ries of measurements of limnological, hydrological and
climate variables are available. A further purpose is to
identify, with no a priori deterministic assumptions, the
variables with greater predictive power in the complex

ecological relationships between plankton populations,
physical and chemical water properties as well as climate
and environmental changes over time.

Thanks to a 25-year long time-series of regular lim-
nological data, the deep, oligotrophic and large Lake
Maggiore (Northern Italy) is the ideal case study to test
the predictive ability of GP.

Introduction to Genetic Programming

Genetic Programming is an evolutionary algorithm
optimization technique that generates computer programs
as solution to a problem. GP derived from Genetic Algo-
ritm (GA), both works in analogy of organisms’ reproduc-
tion and evolution through selection. However, while GAs
are working on solutions of fixed size, GP can generate
solutions of variable and increasing size, thus resulting
more suitable for ecological modeling. Another advantage
of GP over other optimization techniques is its ability to
perform automatic feature selection, automatically disre-
garding those features (i.e. variables) not relevant for the
solution of the problem. In the context of ecology, feature
reduction is extremely desirable, given the huge number
of possible variables influencing a system.

GP has been utilized in a variety of benchmark prob-
lems (White et al., 2013) and it is applicable in a high
number of different contexts (Koza, 1992). In this study
we will focus on symbolic regression, as we want to as-
semble equations effective in forecasting a variable of in-
terest. The general workflow of GP is similar to GA:
starting from a randomly initialized population of mod-
els/equations, the fitness of each model is evaluated and
the process of natural selection is simulated. After the se-
lection of the variable to be predicted, the generation of
the best predictive model is accomplished in 5 steps:

i) Generating a random population of individuals. Each
of them is an equation designed to provide the value
of a variable of interest as a function of some other
measured variables. A common form of encoding is
the parse tree, i.e. a way of writing an equation com-
patible with the programming language used in this
kind of software (example in Fig. 1).

ii) Evaluating the fitness of each equation, as its ability

Tab. 1. Parallelism between Nature and Computer in evolutionary algorithms.

Individual Solution to a problem

Population Set of solutions

Fitness Quality of the solution

Chromosome Representation for a solution (e.g., set of parameters)
Gene Part of the representation of a solution

Crossover, mutation Search operators

Natural selection

Promoting the reuse of good (sub-)solutions
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to provide estimated data as close as possible to the
observed data. This evaluation is performed measur-
ing the error between predicted and actual values.

iii) Selecting phase the best performing equations (those
with lower error).

iv) To increase the overall population fitness, mainly the
‘promising’ solutions undergo to offspring genera-
tion. The process is accomplished through search op-
erators like crossover and mutation, which generate

v) The termination criteria for these algorithms can be
an evaluation of the newly generated offspring. If they
meet a certain quality the solution is accepted, other-
wise the offspring forms a new generation and the
process is iterated for several generations.

These steps are illustrated in Fig. 1 using as example
a population of equations predicting phytoplankton
chlorophyll from nitrogen (N), phosphorus (P) and solar

new equations.

Generating
> population

—

Measuring
fitness

Generating
offspring

Fig. 1. Flow chart of Genetic Programming data processing.
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METHODS
Study site and sampling

Lake Maggiore is a large, deep, subalpine lake (lake
area 212 km?, Z,,. 372 m) in Northern Italy, included in
the Southern Alpine Lakes LTER site. This lake is clas-
sified as holo-oligomictic since complete overturn takes
place only during periods of strong wind and low air tem-
peratures (Ambrosetti ef al., 2003). The total P concen-
tration decreased from 1977 to 1995 by a factor of 4.6
and the lake is now oligotrophic, with TP around 10 pg
L' (Gallina et al., 2013). In this lake, the trend over time
of physical, chemical (Salmaso and Mosello, 2011;
Salmaso et al., 2013) and biological variables in the size
range of the microbial food chain are well studied
(Bertoni et al., 2010).

Since 1980, the lake is included in a monitoring pro-
gram of biological, chemical and physical variables, with
monthly/fortnightly samplings along the whole water col-
umn, funded by the International Commission for Protec-
tion of Italian Swiss Waters (CIPAIS). The data used in
this paper, with the relevant analytical details, are avail-
able in the annual reports of the Commission download-
able from www.cipais.org.

Sampling took place at the deepest point of the lake.
The samples for the biological variables were taken
monthly (winter and autumn) and fortnightly (spring and
summer). Water samples from the 0-20 m layer, corre-
sponding to epilimnion when the lake is stratified, were
collected using a sampler (Bertoni, pat. 96/A 000121) that
collects a 5 L integrated sample in a single operation from
the surface to 20 m. For the 20-370 m layer, correspon-
ding to hypolimnion when the lake is stratified, samples
were taken at 20 m depth and at 50 m, and then at 50-
meter intervals down to the bottom Volumes of samples
proportional to the thickness of the layer were pooled to
obtain an integrated sample. The samples for chemical
analysis were collected monthly at 12 depths along the
water column. The 0-20 m and 20-370 m integrated val-
ues are depth-weighted mean of values from each depth.
Samples were prefiltered through a 126 pm plankton net
to eliminate larger zooplankton.

Climatic variables

Lake water temperature profiles were obtained at any
sampling with reversing thermometers and continuous
recording probe (Ocean 316, Idronaut) and used to calcu-
late the monthly average temperature of 0-20 m and 20-
370 m layers. Continuous recording of solar radiation was
provided by pyranometers placed at the meteorological
station of the CNR ISE and used to calculate the monthly
average solar radiation (rad). As proxy of the precipita-
tions in the drainage basin we used the monthly average
discharge (Q) of the three most important tributaries of

Lake Maggiore, whose catchments account for almost
70% of the entire lake watershed.

Water chemistry

Details about the analytical methods and quality assur-
ance/quality controls (QA/QC) procedures used in the hy-
drochemical laboratory can be found in Mosello et al.
(2001). For the purposes of this research, monthly data of
pH, conductivity (cond), alkalinity (alk), dissolved oxygen
concentration (O,), inorganic carbon (IC), total and reactive
phosphorus (TP and RP), nitric and total nitrogen (NO; and
TN), and reactive silica (Si) were used to calculate their av-
erage values in the layers 0-20 and 20-370 m.

Organic carbon and Chlorophyll a

Total organic carbon (TOC) concentration was meas-
ured with a total organic carbon analyzer (Shimadzu,
5000A). Duplicate subsamples where filtered through
GF/C filters (Whatman) previously combusted at 450°C
for 3 h. The filters where used to perform Particulate Or-
ganic Carbon (POC) analyses by CHN Elemental Ana-
lyzer (Carlo Erba, ANA 1500) (Bertoni, 1978).

Chlorophyll @ (Chl) was determined fluorometrically
by Perkin-Elmer LS-2 Filter Fluorometer in duplicate sub-
samples, filtered through GF/C (Whatman), after pigment
extraction with methanol (Holm-Hansen and Riemann,
1978). Chlorophyll to carbon conversion was calculated
according to Riemann et al. (1989).

Bacteria counting and biovolume measuring

Samples for cell counting were immediately fixed
with 0.2 um filtered formaldehyde (final concentration
2% vol/vol). After 4°, 6-diamidin-2-phenylindole (DAPI)
staining (final concentration, 0.1 pg mL™"), the samples
were filtered onto 0.2 pm pore-size polycarbonate mem-
branes, and counted by epifluorescence microscopy (Zeiss
Axioplan microscope equipped with an HBO 100 W
lamp, a Neofluar 100 x objective 1.25 x additional mag-
nification and filter sets for UV: BP365, FT 395, LP420).
400 bacterial cells were counted on at least 10 fields in
individual filters. Cellular size was measured using image
analysis software (Image-Pro Plus 5.1, Media Cybernet-
ics) after manual thresholding and the volumes were esti-
mated according to simple geometric shapes. Bacterial
carbon (Bact C) was computed from mean cell volume
according Loferer-KroBbacher et al. (1998).

Phytoplankton

Phytoplankton determinations were performed on sub-
samples preserved in acetic Lugol’s solution. Counting
and measuring were carried out in sedimentation cham-
bers (Vollenweider, 1974) using an inverted microscope.
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Cell dimensions were measured using an electronic cal-
liper and a mean biovolume of each species was estimated
from linear measures and using the closest geometrical
shape (Hillebrand et al., 1999). The organic carbon con-
tent of phytoplankton was estimated from mean cell vol-
ume using an equation of the form y=ax?, where y is the
carbon content, x is the cell volume, the coefficient a and
b are equal to 0.12 and 1.015 respectively, according to
the equation reported in Montagnes et al. (1994). The
same coefficients were used for phytoplankton as whole,
as well as for diatoms and cyanobacteria.

Calculation and statistic

Trends in the long-term data series were tested using
the Mann-Kendall trend test. P values of the statistical tests
were related to a significance value of 0=0.05. In cases with
p values <0.05, the null hypothesis (no trend in the data se-
ries) was rejected. All analyses were carried out with the
Microsoft EXCEL add-in program XLSTAT 2014-TIME.

The Genetic Programming computations were made
using Eureqa 1.10 academic version (Schmidt and Lipson,
2009), after statistical standardization to improve data
scaling: y=(Y-u)/o. We wanted to predict the time evolu-
tion of TOC, POC, phytoplanktonic carbon and bacterial
carbon as function of physical, chemical and climatic vari-
ables. These variables to predict are proxy of the lake’s
trophic conditions and can provide information on the
variation over time of the various components of the or-
ganic carbon cycle. The GP software was used to search
for a formula y=f(x;, ...,x,), where y is a form of Organic
Carbon (OC) and x; ...,x, are the 0-20 m and 20-370 m
data for each variable:

(OO=1((0,), (pH), (Cond), (Alk), (NOy), (RP), (TP),
(TN), (Si), (IC), (temp), (S.d), (Q), (rad))

The pool of functions which GP uses to map the relation
between variables included arithmetic operators (constant,
input variable, addition, subtraction, multiplication, divi-
sion), and exponential operators (exponential, natural log-
arithm, power, square root) as well as functions accounting
for the previous history of the variables (delayed variable,
simple moving average). The predictive ability, or fitness,
of the equations generated by the GP software was meas-
ured as Mean Absolute Error between predicted and actual
values. We used the first 21 years of our time series as train-
test set and retained the last 4 years for validation purposes.
We further divided the train-test set: we used 75% of data
for training the GP and 25% for testing and model selection.
By default, Eureqa ranks the equations found according to
a ratio of complexity (size of the equation) and accuracy
(lower mean absolute error); solutions that are accurate but
not too complex are accepted and selected for further vali-
dation on the last 4-year dataset.

For comparison purposes, using the Python module -
Scikit-learn (Pedregosa et al., 2011), we applied a Multi-

ple Linear Regression (MLR) model assuming as depend-
ent variables the organic carbon parameters listed above
and as independent variables the physical, chemical and
climatic variables appearing in the above equation. The
same statistical standardization of data as for Genetic Pro-
gramming computation was applied.

COMPARING GENETIC PROGRAMMING
AND REGRESSION MODELS

Trend of time series

The results of trend test for all the variables considered
in the two layers 0-20 m and 20-370 m are presented in
Tab. 2. The minimum and maximum values of the water
column for the period 1988-2012 are also shown.

Observing the climatic variables it is evident that in
the past 25 years the temperature of the surface and deep
layers of the lake has increased as the solar radiation, also
showing a trend towards the increase. The water supply
from the watershed has instead shown no significant trend
although there are evidences of a change in the seasonal
distribution, frequency and intensity of the rainfall events
(Saidi et al., 2015).

The water chemistry data reveal a significant decrease
in time of the oxygen concentration, which, however, re-
mained always high enough to avoid the hypolimnetic
hypoxia (minimum measured 6.3 mg L'). This is possi-
ble because the oxygen supply in this lake occurs also
through mechanisms different from the convective circu-
lation, such as riverine water intrusion and deepening of
colder littoral waters (Ambrosetti ef al., 2003). As con-
sequence, the oxygen supply of the lake takes place
through a complex multi-year cycle, undetectable in a 25
years trend estimate.

The ionic content of lake water also increased, as
shown by conductivity trend. The last 25 years have also
been characterized by a significant rise in the concentra-
tion of inorganic carbon (IC) and of nitrate (NO,) and
total nitrogen (TN) in the hypolimnetic layers. On the
contrary, the concentration of total phosphorus (TP) de-
creased significantly while the inorganic fraction, the re-
active phosphorus (RP), showed no significant variation
in time.

All the variables related to different forms of organic
carbon we wanted to predict showed a significant concen-
tration decrease in the 25 years both in the epilimnetic and
the hypolimnetic layers. This holds true also for phyto-
planktonic carbon data, which obviously refers only to the
photic zone. The bacterial carbon is an exception since
significantly increased in the whole water column.

Genetic Programming models

The results obtained with GP are summarized in Tab. 3,
where are presented the best performing equations, i.e. those
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with lower complexity (size of the equation) and higher ac-
curacy (lower Mean Absolute Error), with respect to the test
data. The equations of high complexity (size >25) were dis-
carded since the increased complexity added little accuracy
increasing the risk of overfitting. The equations with high
Mean Absolute Error were also discarded because of their
poor forecasting accuracy. It is worth noting that some
variables have a relevant predictive value appearing often
in the models. Considering the climatic variables, temper-
ature and radiation are often present in 0-20 m layer equa-

tions. The predictive role of the river discharge, a proxy of
the precipitations in the entire watershed, seems poor since
this variable appears only in 20-370 m in the POC model.
This result is likely since in Lake Maggiore the riverine
inflowing water, often with temperature lower than that of
lake’s superficial layers, tend to sink rapidly into the
deeper layers. The frequent presence of nitrogen in the
equations leads to reconsider the role of this element, re-
puted non-limiting due to its high concentration in Lake
Maggiore waters (Morabito ef al., 2003). Nitrate also ap-

Tab. 2. Trends of time series for different variables during the period 1988-2012 evaluated with the Mann-Kendall Test using monthly

average data.

Water temperature Temp °C i T 6.2-21.4
Main tributaries discharge Q m’ sec”! - 40.7-738.8
Solar radiation Rad MJ m= 1 2182-23650
Dissolved oxygen 0, mg L' l l 6.3-12.7
pH pH - T 7.1-8.9
Conductivity at 20°C Cond uS em! 1 T 117.8-156.4
Alkalinity Alk meq L' 1 T 0.640-0.888
Nitrate NO; pgNL! i il 531-904
Total nitrogen TN pg NL! - 1 693-1124
Reactive Phosphorus RP ugPL! - - 1.0-17
Total Phosphorus TP WoRAES ! l 3.3-21
Reactive silica Si mg Si L! - 1 0.1-1.9
Inorganic carbon IC mg C L' 1 T 8.1-12.1
Total organic Carbon TOC pg CL! l l 223-2362
Particulate organic Carbon POC pg CL! l l 32-721
Bacterial Carbon Bact C pg L 1 1 3-251
Phytoplankton carbon (from Chlorophyl) Phy (Chl) pg L l 3.3-436.7
Phytoplankton carbon (from biovolume) Phy (biov) pg L l 3-619
Diatoms carbon (from biovolume) Dia (biov) pg L - 0.4-508
Cyano carbon (from biovolume) Cy (biov) pg L l 0.1-532
Secchi disk S.d. m - 2.5-16.4

|, significant decrease; 1, significant increase; -, no significant trend.

Tab. 3. Best performing equations for the 0-20m and 20-370m layers with their complexity (size) and accuracy (fit) found with GP
using data from the period 1988- 2008 (acronyms in Tab. 1). The operator sma,, (simple moving average of the last 12 values of a vari-
able) appears in the equation if the previous history of a variable has a relevant predictive value.

TOC=0.109*TN-+sma,, pH-0.594*IC 12
POC=0.478*pH+0.143* rad-0.286*NO;-0.343*S.d-0.419*temp 19
Bact C=0.369%temp+0.237*N0;-0.134-0.255*Si 13
Phy (biov)=0.289*rad+0.285*pH-0.222*N0,-0.257*8i-0.361*S.d.-0.683*temp 23
Phy (Chl)=0.438*0,+0.319* TP-0.077-0.132*RP-0.438 *NO, 17
Dia (biov)=0.401%*rad-0.313*8.d.-0.604*Si-0.812*temp 15
Cy (biov)=(0.292+0.042*RP )/exp(IC )-0.642 14
TOC=0.004-0.082*TN-0.164*0,-0.275*pH 13
POC=0.122*Q+0.140* O,*alk-0.079-0.419%IC 15
Bact C=0.611*NO,-0.345*Cond 7
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pears in conjunction with the total and inorganic phospho-
rus as predictor of phytoplanktonic carbon estimated
through Chlorophyll @ concentration.

Multiple Linear Regression models

An application of MLR consistent with the statistical
theory would involve a selection of predictor variables, ex-
cluding from the model the variables which are not inde-
pendent and those without a known causal link with the
dependent variable. Nevertheless, we decided to keep all
the available variables to ensure maximum comparability
of the two approaches. For the same reason we tested the
MLR model retaining all variables regardless of whether
a variable reaches statistical significance. Appropriate data
transformations were applied when necessary to satisfy the
requirements of parametric statistic. The equations ob-
tained with the MLR model are presented in Tab. 4. Also
the MLR equations were computed from data of the period
1988-2008. The remaining four years (2009-2012) were
used to validate the models.

In Fig. 2 the forecasted trends of TOC, POC and Bact
C for the period 2009-2012 computed from GP and MLR
models are presented. For each variable, the trend of the
actual data is also reported for sake of comparison. The
bar chart below each trend plot reports the absolute error
of GP and MLR based forecast. The overall error of GP
and MLR on each variable is illustrated in the side boxplot
showing the median, the first and third quartiles, the in-
terquartile range, and the outliers.

Looking to the variables related to the entire water col-

umn the predictive accuracy of GP and MLR models for
TOC, POC and Bact C is similar both in 0-20 m and 20-
370 m layer. However the overall error of GP is lower
than that of MLR, with the exception of Bact C in the
more superficial zone. The difference between predicted
and actual values (i.e., the absolute error) is higher when
the observed values peak. This suggests that some trigger
variable or some synergistic effect is not included in the
model. Note that in the bar chart of absolute error of TOC,
0-20 m layer, the data for the first year are missing. This
is due to the presence in the relevant equation
(TOC=0.109*TN+sma,, pH-0.594 * IC) of a history term
(sma,, pH) including the simple mobile average of the pH
values of previous year as relevant forecasting variable.
This suggest a lasting effect of pH on the IC concentra-
tion, which is also a relevant predictor of TOC concentra-
tion. Because of the history term the Absolute Error of GP
forecasting can not be computed for the first year. The GP
and MLR comparison in the boxplot refers to years 2010-
2012 only.

Fig. 3 presents the forecasted trend of the phytoplank-
tonic organic carbon data, computed from chlorophyll and
algal biovolume data for the period 2009-2012. The fore-
cast obtained from GP and MLR models for each variable
are plotted together with the actual data plot. The bar chart
below each trend plot report the absolute error of GP and
MLR based forecast. The overall error of GP and MLR,
for each variable, is compared in the side boxplot showing
the median, the first and third quartiles, the interquartile
range and the outliers.

Considering the variables accounting for phytoplank-

Tab. 4. Coefficients of the MLR equations for the 0-20m and 20-370m layers obtained using data from the period 1988-2008

Intercept ~ -0.016  0.049  -0.029  0.045 0.018 0.010 0.035 -0.079  0.044  0.033
0, 0.122  -0029  -0.086  0.159 -0.026 0.022 -0.059 0.112  -0.092  0.124
pH 0.182 0501  -0.636  0.240 0.556 0.090 0.514 0517 0229  -0.542
Cond 0.218 0159  -0215  0.236 0.182 -0.003 0.055 0.126 0.153  -0.340
Alk -0.555  -0.326  1.041  -0.682 -0.645 -0.084 -0.344 0245  -0.148  0.957
NO, 0211  -0236 0292  -0.298 -0.188 -0.045 -0.396 -0.062  -0.032 0424
RP 0.101  -0.090  0.076  -0.072 -0.086 -0.042 -0.014 -0.008  -0.005  0.014
TP 0.058 0.122  -0.083  0.260 0.035 0.010 -0.008 -0.052  0.017 0.014
N 0.143 0.061  -0.172  -0.008 0.038 -0.052 0.098 0.007 0.029 0.090
Si 20.062  -0.028  -0342  -0.296 -0.197 -0.589 0.395 -0.105  -0337 0271
IC -0.081  0.144  -1.042  0.406 0.464 0.265 -0.029 -0.635 0072 -1.005
Temp 20.002 0335 0216  -0.529 -0.719 -0.833 -0.283 0.043  -0.123  -0.137
Q -0.081  -0.061  -0.071  -0.084 -0.069 -0.031 0.022 -0.068  0.099 0.090
S.d. 0115 0360  -0.131  -0.360 -0.423 -0.379 -0.106

Rad -0.085  0.201 0.299 0.048 0.349 0.383 0.021

dep, dependent variables, indep, independent variables, other acronyms in Tab. 2.
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Fig. 2. GP and MLR based forecast, absolute error (bar chart) and mean absolute error (box plot), compared with the actual trend of
TOC, POC and Bact C for the period 2009-2012 in the superficial (0-20 m) and deep (20-370 m) layers of Lake Maggiore.
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tonic carbon production, the GP and MLR perform in a
comparable way providing data forecast affected by errors
of comparable size. Also with phytoplankton related vari-
ables, the difference between predicted and actual values
is larger than the measured values, suggesting the exclusion
from the model of some relevant driving variable.

If we compare GP and MLR results (Figs. 2 and 3),
the predictive capability of the two approaches result sim-
ilar. However GP provides effective forecasting models
automatically selecting the variables with the highest pre-
dictive power. This result allows a drastic reduction in the
number of variables to be monitored, with a consequent
reduction of monitoring costs and time. In addition the GP
approach highlights non-obvious and unforeseen relation-
ships between the variables considered. In particular, in
0-20 m layer TN and NO, concentration are present in the
equations predicting TOC, POC, Bacterial C and phyto-
planktonic C evaluated from both microscopic determi-

2008 Jan 2010 Jan 2011 Jan 2012 Jan

[— Aewal - GF -~ MR

Phyto (biov) (sl 1)

Absolute Error

2008 Jan 2010 Jan 2011 Jan 2012 Jan
[— Actug  -- @GP - MR

nation and cell Chlorophyll content. This result is some-
what unexpected since the high concentration of N in
Lake Maggiore, and the high N:P ratio, had suggested this
nutrient to play a minor role respect to phosphorus as a
controlling variable. TP and RP are relevant predictive
variables only forecasting phytoplanktonic carbon esti-
mated through chlorophyll concentration.

TN and NO; appear in 20-370 m equations forecasting
TOC and Bact C, supporting that hypolimnetic layer is a
site of intense activity in the N cycle, as suggested by Cal-
lieri et al. (2014).

Another variable that appears to have a significant role
in the GP models is, in the layer 0-20 m, the temperature,
present in the equations of POC, Bact C, Phy (biov) and
Dia (biov). Silica is a significant predictor of this latter vari-
able, as might be expected; Si also appears significant in
predicting the Bact C, suggesting the important role of di-
atoms in producing the substrate for bacterial populations.
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Fig. 3. GP and MLR based forecast, absolute error (bar chart) and mean absolute error (box plot), compared with the actual trend of the
organic carbon content of phytoplankton, evaluated from biovolume [Phy(biov)] and Chlorophyll [Phy (Chl)], and of Diatoms [Dia
(biov)] and Cyanobacteria [Cy (biov)] for the period 2009-2012 in the superficial (0-20 m) layers of Lake Maggiore.
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In the past, the comparison was made of different evo-
lutionary computation techniques such as Artificial Neural
Networks (ANN) and GP (Muttil et al., 2006). Further-
more, many examples exist of use of GP to build predic-
tive models of the time-series dynamics of phytoplankton
in lakes (Dong-Kyun et al., 2007). However, to our
knowledge in this paper for the first time regressive and
evolutionary computation techniques are compared on a
twenty-five years data series to forecast a compartment
of the ecosystem wider than the phytoplankton.

CONCLUSIONS

Continuing in situ measurements of limnological, hy-
drological and climate variables of lakes and rivers retain
most momentous information about complex ecological re-
lationships between plankton populations, physical and
chemical water properties, as well as climate and environ-
mental changes over time. The extraction of valuable eco-
logical information from long-term time series data allows
the generation of predictive models useful for the manage-
ment of freshwater ecosystems and the advance of theories
on their evolution and functioning. GP is an excellent tool
to achieve these objectives, since it is capable of producing
effective predictive stochastic models, without the con-
straints imposed by parametric statistic and deterministic
models. In addition, the GP approach is able to highlight
non-obvious relationships between variables, which can
help understanding the long-term ecological variability.
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