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INTRODUCTION

Microcystis aeruginosa (M. aeruginosa) is one of the
most harmful freshwater bloom-forming cyanobacteria,
which are common in many eutrophic lakes around the
world (Van Gremberghe et al., 2011; Sun et al., 2012; Ye
et al., 2012; Barinova and Chekryzheva, 2014); cyanobac-
terial blooms may cause serious environmental and eco-
nomic problems (Yu et al., 2010; Carvalho et al., 2011,
2013; Isaacs et al., 2014). Growth of M. aeruginosa is af-
fected by many factors, such as temperature, light, and
nutrient availability (Yang et al., 2012; Zhang et al., 2012;
Lehman et al., 2013). Temperature has been considered
to be a primary factor driving Microcystis blooms (Jacoby
et al., 2000; Liu et al., 2011). Higher temperature strongly
promotes the development of Microcystis blooms in sum-
mer (Joehnk et al., 2008; O’Neil et al., 2012). The optimal
temperature for growth and photosynthesis of M. aerugi-
nosa is 28°C, which is higher than that of other phyto-
plankton species (Zehnder and Gorham, 1960; Robarts
and Zohary, 1987). Moreover, sometimes, when the tem-
perature exceeds 30°C, the growth of M. aeruginosa was
not inhibited; a higher temperature of approximately 35°C
often strongly promotes the development of cyanobacte-
rial blooms in summer (Joehnk et al., 2008; Cai and
Kong, 2013), which may be due to the compensatory
growth of M. aeruginosa after high temperature stress.

Compensatory growth refers to the exceptionally rapid
growth of individuals following a period of reduced
growth resulting from suboptimal conditions (Yuan et al.,
1998; Nikki et al., 2004). This phenomenon has been ob-
served and intensively studied in a wide range of plants
and animals (Belsky, 1986; Fang et al., 2014; Remen et
al., 2014; Gong et al., 2015). Compensatory growth is
considered a self defense system for organisms as an
adaptation to variable environments (Bjorndal et al.,
2003) (Turley et al., 2013). The degree of compensatory
growth will vary with species (Mangel and Munch, 2005),
stress level, and stress time (Flöder et al., 2010; Erbilgin
et al., 2014). Understanding the mechanisms of compen-
satory growth that plants use to defend themselves, have
attracted growing attention recently (Erbilgin et al., 2014;
Robert et al., 2014). According to the degree of recovery
that follows the period of restricted development, com-
pensatory growth can be classified into three types,
namely, over-compensation, equal-compensation, and
under-compensation (Ali et al., 2003). Qin and Li (2010)
demonstrated that M. aeruginosa cultured at 40°C for 5
days exhibited over-compensatory growth and that M.
aeruginosa cultured at 40°C for 10 days exhibited com-
plete compensatory growth. Although extreme tempera-
tures of 40°C do not occur regularly, temperate and
subtropical areas, where M. aeruginosa are found in abun-
dance, continuously experience temperature increases to
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35°C (Stocker et al., 2013), which leads to regular mod-
erately high-temperature stress to M. aeruginosa. Thus,
investigations on the compensatory growth under moder-
ately high-temperature stress are especially necessary.

High temperature causes an array of biochemical
changes in plants that affect plant growth and develop-
ment (Wahid et al., 2007). Laxman et al. (2014) demon-
strated that greater activity of superoxide dismutase
(SOD) resulted in higher membrane stability under mild
high-temperature stress. Wang et al. (2014) found that
SOD and catalase (CAT) were all up-regulated under high
temperature. Tikhomirova (1985) found that seed harden-
ing at high temperature resulted in plants tolerant to over-
heating as well as higher levels of water-soluble proteins.
Similarly, accumulation of soluble sugars under heat
stress has been reported in sugarcane, which entails great
implications for heat tolerance (Wahid and Close, 2007).
The chlorophyll a (Chl-a) content in a certain algal cell is
determined by temperature (Chen et al., 2011). For that
reason, the changes in the biochemical characterization
involved in compensatory growth should be studied.

Only a few studies have shown compensatory growth
in M. aeruginosa under high temperature. Moreover, the
mechanisms of this compensatory process have not been
analyzed. How do M. aeruginosa adjust to high tempera-
ture? Those responses and adaptation are important for
their survival and growth. Thus, it is useful to provide a
better understanding of the biochemical mechanism of
such compensatory growth. Therefore, a laboratory ex-
periment was conducted to study the biochemical mech-
anism of the compensation process in M. aeruginosa
under moderate high-temperature. Cell density, and some
important biochemical parameters of M. aeruginosa, such
as Chl-a, soluble sugar, soluble protein, SOD, CAT, per-
oxidase (POD), and malondialdehyde (MDA), were in-
vestigated. 

METHODS 

Organisms and cultivation

M. aeruginosa (FACHB 905) was obtained from the
Institute of Hydrobiology, Chinese Academy of Sciences,
which was isolated from Taihu Lake, PR China. The M.
aeruginosa was batch cultured axenically in a liquid BG-
11 medium (Rippka et al., 1979) at 25°C and under cool-
white fluorescent lights (2000 lx), using a light-dark
period of 12 h:12 h. 

Experimental design

The cells in the mid-exponential growth phase were
collected for the high temperature stress experiments.
After each sample was sterilized, the algae were concen-
trated by centrifugation at 4000 r/min for 15 min, and then
the purified algae was inoculated into a liquid BG-11

medium in 250-mL flasks; the initial densities of algae in
the experiments were all 2.52×106 cells mL–1. 

The experiment is comprised of two phases: a stress
phase and a recovery phase. The cells were cultured at a
moderately high temperature of 35°C, and M. aeruginosa
cultured at 25°C was taken as the control. The stress
phases lasting for 3 days, 6 days, and 12 days were re-
ferred to as the 3-d, 6-d, and 12-d groups, respectively;
the recovery phase lasted for 30 days. At different days
(3, 6, and 12 d), both in 35°C and 25°C, algae were re-
suspended in a BG-11 medium in 500-mL flasks and cul-
tured axenically at 25°C for 30 days. The cultures were
shaken twice daily to maintain culture homogeneity; each
treatment was replicated 3 times.

Determination of the indices

During the incubation period, the cell density of cul-
ture was monitored spectrophotometrically at 680 nm
(OD680) every day. The regression equation between the
density of algal cells (y mL–1) and OD680 (x) was estab-
lished as: 

y = 1.15×107x + 2.69×105 (R2 = 0.99)                      (eq. 1)

The measurements were performed at the same period
of the day to minimize the possible cell cycling effect. The
Chl-a concentration was determined according to the
method described by Huang et al. (1999). During the in-
cubation period, the Chl-a concentration was determined
every 3 days. A 5-mL aliquot of the sample solution was
taken from each replicate bottle and gently filtered
through a 0.7-μm polycarbonate membrane for pigment
determination. The Chl-a was extracted in 90% acetone
solution for 24 h at 4°C, and the concentration was deter-
mined via colorimetry. The activities of SOD, CAT, POD,
and MDA were measured every 3 days during the culture
period. The SOD activity was determined using a modi-
fied procedure of pyrogallol autooxidation (Gu et al.,
2006). One unit of SOD activity was defined as the
amount of enzyme required to inhibit the autooxidation
of pyrogallol to 50%. The activity of CAT activity was as-
sayed with a spectrophotometrical method according to
the method of Rao et al. (1996). One unit of CAT was de-
fined as the decrease of absorbance at 240 nm up to 0.1
in 1 min. The POD activity was measured using the
method of Chance and Maehly (1955) with guaiacol as an
electron donor, and the absorbance of the supernatant was
determined at 470 nm. One enzyme unit was defined as
the amount of enzyme causing an absorbance change of
0.001 per min under standard conditions. Lipid peroxida-
tion is measured as the amount of MDA. The MDA con-
tent was determined using the thiobarbituric acid reaction,
as described by Heath and Packer (1968). The soluble pro-
tein content was determined via protein-dye binding with
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Coomassie brilliant blue (Bradford, 1976), using bovine
serum albumin as a protein standard. The content of sol-
uble sugar was determined using the phenol-sulfuric acid
method (Kochert, 1978).

Statistical analyses

Data of the five treatments were statistically evaluated
using a one-way analysis of variance. The means were
compared using Duncan’s new multiple range test at the
5% level. 

To evaluate quantitatively the compensation effect of
M. aeruginosa after the moderate high-temperature stress,
we calculated a compensation index (CI), using the fol-
lowing equation (Belsky, 1986):

CI= G/C                                                                  (eq. 2)

Where G is the cell density of the control, and C is the
cell density of the treatments after moderate high-temper-
ature stress. G/C>1 denotes over-compensation, G/C=1
denotes equal-compensation, and G/C<1 denotes under-
compensation. Grey correlation analysis was conducted
to evaluate the impact of antioxidant enzyme activities,
chlorophyll a content, soluble protein and sugar, and
MDA on the M. aeruginosa density during the recovery
phase (Deng, 1989). 

The original impact factors and the target factor were
represented as {Xi(k)} and {X0(k)}, respectively.

{X0(k)} = {X0(1), X0(1),…, X0(n)} k = 1,2,…,n
{Xi(k)} = {Xi(1), Xi(1),…, Xi(n)} k = 1,2,…,n; i = 1,2,…,m

where m is the number of impact factors, and n is the total
number of observation data.

Grey data processing must be transformed to be dimen-
sionless before grey correlation coefficients can be calcu-
lated. Each series is normalized to have mean equal zero
and standard deviation equal one (Tang and Feng, 2006).

The correlation coefficient ξi (k) between the original
impact factors and the target factor could be calculated as
follows:

(eq. 3)

where is the minimum absolute distance
among all impact factors, and is the
maximum absolute distance. ρ is taken as 0.5 (Deng, 1989).

The grey correlation grade ri(k) is an average of the
grey correlation coefficients that is defined as follows
(Deng, 1989):

                                                          (eq. 4)

RESULTS 

Growth performance of M. aeruginosa

According to Fig. 1, during the stress phase the growth
of M. aeruginosa was significantly inhibited under mod-
erately high temperature in a time-dependent manner. The
difference between the two temperatures increased with
time: after 12 days of culture, the cell density at 35°C de-
creased to 85.51% that of the control. During the entire
recovery phase, for the mean cell density, the order is as
follows: 6-d group > control group > 12-d group > 3-d
group. Nevertheless, after 27 days of culture, the differ-
ences of the cell density among the different treatments
narrowed, and the four groups tended to be the same. This
result suggests that after the moderate high-temperature
stress, the growth of M. aeruginosa also returned to the
normal level. 

The mean compensation indices for M. aeruginosa
cell density are displayed in Fig. 2. The mean compensa-
tion indices varied from 0.72 to 1.06. For the mean com-
pensation indices, the order is as follows: 6-d group >
12-d group > 3-d group. There are significant differences
among the 3-d group, the 6-d group, and the control.
However, no significant difference was observed between
the 12-d group and the control. According to the compen-
satory growth types, over-compensation was observed in
the 6-d group, under-compensation was observed in the
3-d group, and equal-compensation was observed in the

Fig. 1. Growth curves of M. aeruginosa during the stress phase
and the recovery phase. M. aeruginosa cultured at 25°C is re-
ferred to as the control. M. aeruginosa cultured at 35°C for 3,
6, and 12 days are referred to as the 3-d, 6-d, and 12-d groups,
respectively. Error bars represent the standard deviations, n=3.
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12-d group. These results indicate that the M. aeruginosa
growth of the 6-d group was the best. 

Content of Chl-a, soluble protein, and soluble sugar of
M. aeruginosa

As presented in Tab. 1, during the stress phase, the
Chl-a concentration of M. aeruginosa cultured at 35°C
was significantly lower than that at 25°C, especially at
day 3. In the recovery phase, for the mean Chl-a concen-
tration during the entire recovery phase, the order is as
follows: 6-d group > 12-d group > 3-d group = control.
During the stress phase, the soluble protein content of M.
aeruginosa cultured at 35 °C initially increased, peaked
at day 6, and then decreased gradually; while during the
recovery phase, the soluble protein content of the 3-d
group was the highest. For the soluble sugar, during the
stress phase, the soluble sugar content of M. aeruginosa
cultured at 35°C was always lower than that of the control.
During the recovery phase, the mean soluble sugar con-
tent of the 6-d group was the highest.

Enzymatic antioxidants activities of M. aeruginosa

As shown in Fig. 3a, during the stress phase, the SOD
activity was significantly enhanced by moderately high
temperature. The SOD activity increased with stress time.
The SOD activity reached a maximum value of 0.176 U
mg pro–1 when algal cells were cultured at 35°C for 12
days. During the recovery phase, the SOD activities in the
3-d, 6-d and 12-d groups were remarkably decreased dur-

ing the first 12 days, eventually decreasing to the same
level as that of the control. 

The trend observed for CAT activity is shown in Fig.
3b. There was an increase of CAT activity during the
stress phase, with 0.390 U mg pro–1 obtained at 12 d, a
value 7.36-fold higher than that of the control. During the
recovery phase, the CAT activities in the 3-d and 12-d
groups decreased significantly with the recovery time and
the CAT activity in the 6-d group exhibited a dramatic in-
crease in the first 12 recovery days and then decreased.
During the entire recovery phase, the SOD activities of
the 6-d group were the highest. At the end of the experi-
ment, the four groups tended to be similar. There was also
a POD activity increase during the stress phase (Fig. 3c),
with 0.998 U mg pro–1 obtained at 12 d, a value 5.64-fold
higher than that of the control. During the recovery phase,
the POD activities in the 3-d, 6-d and 12-d groups de-
creased slightly. In the entire recovery phase, for POD ac-
tivity, the order is as follows: 12-d group > 6-d group >
3-d group > control. At the end of the experiment, the
three stress groups tended to be the same; however, the
POD activities were all significantly higher than that of
the control.

Taken together, the activity of SOD, CAT, and POD
increased remarkably with moderate high-temperature
stress. During the recovery phase, the enzyme activities
decreased with time, and the difference among treatments
reduced over time.

MDA content of M. aeruginosa

As shown in Fig. 4, during the stress phase, the MDA
content was significantly enhanced by temperature stress.
The MDA content increased significantly with time. Dur-
ing the recovery phase, the MDA content decreased sig-
nificantly with the recovery time. At the end of the
experiment, the MDA levels in treatments with moderate
high-temperature stress were higher than that of the con-
trol. During the entire culture period, for the MDA con-
tent, the order is as follows: 12-d group > 6-d group > 3-d
group > control. The MDA of the control exhibited no sig-
nificant changes during the stress phase and the recovery
phase. 

Grey correlation analysis between M. aeruginosa
cell density and biochemical indices during
the recovery phase

As presented in Tab. 2, if an impact factor is more im-
portant to the target factor than other impact factors, then
the grey correlation grade between the impact factor and
the target factor is greater than the other grey correlation
grades. According to Tab. 2, the most influential sub-fac-
tor of the cell density of M. aeruginosa is Chl-a (0.7959),
followed by soluble sugar (0.6851), and SOD (0.6701). 

Fig. 2. Mean compensation indices (CI) of the M. aeruginosa
cell density.
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553M. aeruginosa compensatory growth

Fig. 3. Activities of SOD (a), CAT (b) and POD (c) of M. aeruginosa during the stress phase and the recovery phase. M. aeruginosa
cultured at 25°C is used as the control. M. aeruginosa cultured at 35°C for 3, 6, and 12 days are referred to as the 3-d, 6-d, and 12-d
groups, respectively. Error bars represent the standard deviations, n=3.

Tab. 1. Chl-a, soluble protein content, and soluble sugar content of M. aeruginosa during the stress and recovery phase. 

Index                                                              Time (d)                                     Treatment
                                                                                                          3-d group                   6-d group                     12-d group                    Control

Chl-a concentration      Stress phase                     0                          0.18±0.01                    0.18±0.01                      0.18±0.01                    0.18±0.00
(mg 106 cells)                                                        3                          0.15±0.01                    0.15±0.01                      0.15±0.01                    0.24±0.02
                                                                              6                                  -                           0.24±0.01                      0.24±0.01                    0.33±0.01
                                                                             12                                 -                                   -                              0.32±0.00                    0.36±0.01
                                     Recovery phase                6                          0.28±0.04                    0.31±0.02                      0.31±0.02                    0.28±0.03
                                                                             12                         0.26±0.02                    0.33±0.00                      0.30±0.01                    0.24±0.01
                                                                             18                         0.33±0.01                    0.32±0.01                      0.31±0.00                    0.33±0.01
                                                                             30                         0.33±0.01                    0.35±0.00                      0.35±0.00                    0.35±0.00
Soluble protein             Stress phase                     0                          7.34±0.33                    7.34±0.33                      7.34±0.33                    7.34±0.33
(mg 106 cells)                                                        3                          7.54±0.13                    7.54±0.13                      7.54±0.13                    7.55±0.35
                                                                              6                                  -                          10.51±0.20                    10.51±0.20                   8.36±0.59
                                                                             12                                 -                                   -                              8.20±0.22                    7.84±1.02
                                     Recovery phase                6                         10.58±1.25                   7.76±0.26                      8.60±0.89                    7.35±0.73
                                                                             12                         9.76±0.96                    8.12±0.58                      7.89±0.77                    6.98±0.44
                                                                             18                         9.14±0.55                    7.50±0.19                      6.66±0.35                    6.87±1.18
                                                                             30                         7.58±0.24                    8.39±0.12                      7.45±0.68                    6.99±0.13
Soluble sugar               Stress phase                     0                          11.29±1.46                  11.29±1.46                    11.29±1.46                  11.29±1.21
(mg 106 cells)                                                        3                          7.98±0.44                    7.98±0.44                      7.98±0.44                    8.22±1.02
                                                                              6                                  -                           6.91±0.30                      6.91±0.30                    9.56±0.35
                                                                             12                                 -                                   -                              7.22±0.24                    9.43±0.87
                                     Recovery phase                6                          8.29±1.01                    9.28±0.68                      7.77±1.25                    7.81±0.33
                                                                             12                         6.91±0.99                    9.33±0.76                      5.83±0.11                    6.61±0.28
                                                                             18                         8.28±0.37                    9.03±1.49                      7.15±0.26                    7.04±0.23
                                                                             30                         4.45±0.22                    9.75±0.68                     11.26±0.00                   8.89±0.06

M. aeruginosa cultured at 25°C is used as the control. M. aeruginosa cultured at 35°C for 3, 6, and 12 days were referred to as the 3-d, 6-d, and 12-d
groups, respectively. 
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Radar plot analysis 

The scores for each soil indicator are plotted in a radar
plot to identify the limiting indicators (Fig. 5). The values
are normalized to their maximum values. Each axis rep-
resents an indicator. The curves crossing the axes are dif-
ferent treatments. The lines lying at the periphery of the
web have favourable values for M. aeruginosa growth
with reference to the particular indicator (axis), and the
lines toward the origin have unfavourable values. 

Comparison of the indicator scores among the treat-
ments aids in identifying the limiting parameters for a par-
ticular treatment. According to the standard, in the 3-d
group, Chl-a, CAT, and soluble sugar are the limiting fac-
tors; in the 6-d group, soluble protein and MDA are the
limiting factors; in the 12-d group, soluble sugar and
MDA were limiting factors; in the control, almost all of
the parameters were limiting factors, except MDA. 

DISCUSSION

It has been reported that high temperature is one of the
environmental factors that inhibit the growth of algae. In
this study, during the stress phase, the growth rate under

moderately high temperature was significantly lower than
that of the control. However, during the recovery phase, the
growth rate of the 6-d group was significantly higher than
that of the control; this unexpected phenomenon was called
over-compensatory growth. The result was similar to the
result of Qin and Li (2010), who also observed over-com-
pensation in M. aeruginosa after 40°C stress for 5 days. Al-
though compensatory growth has been well documented in
many algae (Cai et al., 2009; Flöder et al., 2010; Qin and
Li, 2014), the biochemical mechanism of compensatory
growth of M. aeruginosa is poorly understood. 

One possibility of such compensation mechanisms is
the exploitation of the change of the Chl-a content. Grey
correlation analysis suggests that the most influential fac-
tor on M. aeruginosa cell density is Chl-a during the re-
covery phase. The Chl-a content has direct influence on
the photosynthetic efficiency and the metabolic level,
which plays a pivotal role in the plant response to tem-
perature stress. In this study, the Chl-a concentration of
M. aeruginosa cultured at 35°C was significantly lower
than that at 25°C during the stress phase. A possible rea-
son for this behaviour is that the accumulation of both
chloroplast biogenesis and chlorophyll are also inhibited

Tab. 2. Grey correlation degree between M. aeruginosa cell density and biochemical indices during the recovery phase.

Grey correlation                                                                                                      Indices
coefficients                       Chl-a          Soluble protein     Soluble sugar                 SOD                       CAT                     POD                     MDA
Cell density                      0.7959                 0.6102                  0.6851                      0.6701                    0.6252                   0.6160                   0.6576
SOD, superoxide dismutase; CAT, catalase; POD, peroxidase; MDA, malondialdehyde.

Fig. 4. MDA content of M. aeruginosa during the stress phase
and the recovery phase. M. aeruginosa cultured at 25°C is used
as the control. M. aeruginosa cultured at 35°C for 3, 6, and 12
days are referred to as the 3-d, 6-d, and 12-d groups, respec-
tively. Error bars represent the standard deviations, n=3.

Fig. 5.Description of M. aeruginosa growth based on the 7 fac-
tors of different treatments during the recovery phase.
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at high temperatures. Interestingly, the Chl-a concentra-
tion increased during the recovery phase. This result was
similar to the result of Burke, who found that a 38°C pre-
incubation temperature provided maximum chlorophyll
accumulation following the high temperature exposure
(Burke, 2001). The increase of the chlorophyll content
was seemingly controlled at the transcription level, as in-
dicated by the changes in the expression of photosynthe-
sis-responsive and antioxidant-related genes.

Grey correlation analysis also suggests that the soluble
sugar affects the M. aeruginosa growth. Soluble sugar
plays a vital role in the growth and anti-adversity of
plants. It has been known for many years that organic
solutes can serve as osmotic regulators in algae; the in-
creased soluble sugar may also provide energy dissipation
during the recovery phase. During the stress phase, the
soluble sugar content decreased. Kirst (1981) suggested
that as the temperature increases beyond the level algae
can tolerate, the normal metabolic conversion would be
hindered. This behaviour may occur due to the disruption
of cellular structure, leading to an irreversible dissociation
of macromolecules caused by the high temperature. Dur-
ing the recovery phase, the soluble sugar content in-
creased compared with that of the control. Due to the
increase of Chl-a during the recovery phase, there is a pos-
sibility that a great quantity of soluble sugar could have
been produced by photosynthesis. We speculate that in-
creased soluble sugar in this research may have a protec-
tive effect in M. aeruginosa to escape the moderately high
temperature injury.

This M. aeruginosa compensatory growth is also as-
sociated with the up-regulation of soluble protein. Most
proteins act as enzymes in defence or metabolic reactions,
and the increased protein contents may indicate an en-
hanced physiological metabolism. The soluble protein of
the 6th day was the highest during the stress phase, which
indicated that high temperature may induce the synthesis
of more protein during the first 6 days because particular
proteins would be produced under unusual environment
conditions (Wahid et al., 2007). In this study, the in-
creased protein synthesis could be a strategy for algal cells
to protect and adapt themselves to high temperature. In
this study, the soluble protein content decreased in 6-12
days, which may be the result of moderately high temper-
ature causing protein damage due to excessive production
of free radicals and peroxides (Zhang et al., 2007).

In response to high temperature stress, the amount of
free radicals increased (Scandalios, 1993). The accumu-
lation of free radicals may damage cellular components,
leading to lipid peroxidation. The adaptation of M. aerug-
inosa for high temperature is also associated with up-reg-
ulation of protective enzymes because protective enzymes
can defend against free radicals. Xu et al. (2006) demon-
strated that the maintenance of higher antioxidant ability

to mitigate lipid peroxidation and cell membrane damage
is associated with heat tolerance in plants. In this study,
we found that the activity of SOD, CAT, and POD rose
remarkably with moderate high-temperature stress, with
the activities increasing with stress time. Wang et al.
(2014) also found that the SOD of wheat increased after
high-temperature stress. Heat stress may induce expres-
sive alterations in oxidative metabolism, which activates
gene expression and increases antioxidative enzyme ac-
tivities (Mittler et al., 2004). 

Increased levels of MDA, which a product of peroxi-
dation of unsaturated fatty acids in phospholipids, indicate
oxidative damage in the algal cell membrane (Wahid et
al., 2007). The produced MDA could damage membranes
by increasing the membrane permeability, thus affecting
the catalytic function of membrane enzymes. During the
stress phase, the accumulation of MDA content in M.
aeruginosa increased, which indicated that the membrane
was continually suffering. Although the antioxidant en-
zyme activities increased with moderately high tempera-
ture, antioxidant enzyme activities were not sufficient to
cope with the increasing amount of free radicals under the
stressful conditions; as a result, the MDA increased. How-
ever, during the recovery phase, the MDA content de-
creased significantly with the recovery time, which
indicates that after the moderately high temperature stress,
the growth of M. aeruginosa returned to the normal level
gradually. 

Overall, M. aeruginosa developed several protective
mechanisms involving increased Chl-a, soluble sugar, and
protective enzyme activities to defend against moderately
high temperature damage. From Fig. 5, on day 3 of the
stress phase, the cell density, Chl-a content, soluble pro-
tein, and antioxidant enzyme activities of M. aeruginosa
at 35°C are all different from those of the control. These
factors indicate that the response to moderately high tem-
perature occurred on the first three days. Although such
changes of M. aeruginosa biochemical characteristics
may serve as a rapid-response mechanism to help M.
aeruginosa to cope with moderate high-temperature
stress, the response level was very low, and the changes
of M. aeruginosa were not sufficient to cope with the
damage under the stressful conditions. The 3-d group has
lower antioxidant enzyme activities during the recovery
phase (Fig. 5). Therefore, the 3-d group exhibited under-
compensation. In this experiment, the response level in-
creased progressively during the stress phase, which
means that the response level changes over time. The re-
sponse level on day 6 of the stress phase was higher than
that on day 3. Therefore, the 6-d group has higher antiox-
idant enzyme activities, higher Chl-a and soluble sugar
content during the recovery phase; the 6-d group exhibited
over-compensation growth. Although the 12-d group has
the highest antioxidant enzyme activities during the re-
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covery phase, the level of membrane lipid peroxidation
was very high, which means the damage on M. aerugi-
nosa was very serious; the changes of M. aeruginosa oc-
curred to cope with the serious damage of high
temperature. Therefore, the 12-d group exhibited equal-
compensation.

CONCLUSIONS

The growth of M. aeruginosa was inhibited signifi-
cantly by the moderate high-temperature stress. However,
after the relief of stress, the 3-d, 6-d, and 12-d groups ex-
hibited under-compensation, over-compensation, and
equal-compensation, respectively. These results indicated
an effective defence system against moderately high tem-
perature occurred on day 6. To cope with moderate high-
temperature stress, M. aeruginosa implement various
mechanisms, including the scavenging of free radicals by
increase antioxidant enzyme activities to maintain mem-
brane stability, the increase of the Chl-a content, and the
accumulation and adjustment of compatible solutes, such
as soluble protein and sugar. The results revealed that the
increase of Chl-a, soluble sugar, and SOD activity in algae
cells play key roles in the compensatory growth of M.
aeruginosa. 

Although, sudden shifts of temperature are rare in nat-
ural conditions, temperature fluctuations between day and
night can be great (Lauritsen and Rogers, 2012; Zhou et
al., 2014). In the day time during summer, surface water
temperatures can reach 35°C in Southern China, South-
eastern North America, Middle East and other sub-tropi-
cal areas (meteorological data available from LTER
Network Data Portal, https://portal.lternet.edu/nis/map-
browse?packageid=knb-lter-ntl.10001.3). Under such
conditions, temperature fluctuation in summer may trig-
ger the M. aeruginosa defence system and cause compen-
satory growth of M. aeruginosa. This may explain the
phenomenon of algal blooms frequently appearing at high
temperatures.

Further studies are necessary to determine the cell
density changes with the different temperature, stress
time, and recovery time so that a mathematical model
can be formulated to predict cyanobacteria bloom in
summer. 
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