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INTRODUCTION

The Mediterranean region is considered as one of the
most important biodiversity hotspots in the world (Myers
et al., 2000). In particular, the southern Iberian Peninsula
is an area of special interest as it is located in one of the
most arid zones of Europe and comprises a wide range of
aquatic ecosystems, from freshwater to hypersaline ones
(Sánchez-Fernández et al., 2004), which represent an
important component of the landscape. 

Mediterranean wetlands are characterized by social,
economic, cultural, scientific and environmental values (see
Williams, 1999 among others). These ecosystems have
been considered as unique because of their ecological
characteristics, which frequently hold exclusive
communities of aquatic organisms, and play an important
role in the maintenance of regional biodiversity (Williams,
1999; De Meester et al., 2005; Oertli et al., 2005;
Céréghino et al., 2008). However, this value has been
frequently overlooked, contributing to their neglect and
inadequate management (Semlitsch and Bodie, 2005). In
fact, nowadays, Mediterranean wetlands are highly
endangered, suffering widespread degradation and loss due
to increase of intensive cultivation, livestock, and urban
uses (Beja and Alcazar, 2003; García-Muñoz et al., 2010).

Zooplankton is one of the most important

communities present in these wetlands. Zooplanktonic
assemblages have previously been used for the ecological
evaluation of wetlands (Gannon and Stemberger, 1978;
Caramujo and Boavida, 2000; Bianchi et al., 2003; Boix
et al., 2005; Parra et al., 2009). However, recently the
European Water Framework Directive (WFD) has
excluded this community from the evaluation criteria in
the protection of wetlands. Some authors have considered
this exclusion as an error (Jeppesen et al., 2011 and
references therein), because the knowledge of
zooplankton diversity is a necessary tool for the
development of strategies for the management and
protection of aquatic biodiversity at landscape level
(Marrone et al., 2006; De Bie et al., 2008). Moreover, the
lack of fish community in temporary wetlands, denote the
importance to include zooplankton in the evaluation of
ecological quality and conservation procedures in
Mediterranean wetlands. 

Previous studies focusing on zooplankton richness in
the Mediterranean area are scarce in comparison to other
climatic regions (Álvarez-Cobelas et al., 2005). The aim
of this study has been the development of monitoring
methods to evaluate zooplankton biodiversity (using as
target groups copepods and branchiopods) in a
Mediterranean area in southern Spain in order to build
models for the entire Mediterranean region. 
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METHODS

Study wetlands

In the present study, we selected a total of 36
endorheic wetlands (Fig. 1) widely differing in their
limnological characteristics (Tab. 1). The term endorheic
reflects the closed nature (no outlet) of the drainage
systems of wetlands (Dantín, 1929; 1940; Allan et al.,
1995). In particular the studied wetlands differ in altitude
(265 to 1582 m asl) and in morphological characteristics:
maximum area ranging from 0.2 to 46 ha and maximum
depth from 10 to 456 cm (Ortega et al., 2003, 2006). All
these wetlands are located in the Alto Guadalquivir, a
representative region of the southern Iberian Peninsula
(Spain), with a Mediterranean continental climate, a
Mediterranean type of climate with continental tendencies
(Capel Molina, 1981; Díaz de la Guardia et al., 2003). The
three main morphologic and geologic units that exist in
Andalusia are present in the study area: Sierra Morena
siliceous mountains at the north, the Guadalquivir

depression with olitostromics deposits and Triassic rocks
in the centre and Baetic calcareous mountains in the south
and east (Vera, 1994). The valley of the Guadalquivir
River represents the most important geographical entity
of this district, being a large proportion of this area which
is characterized by a semiarid climate with a mean annual
precipitation around 400 mm, although aridity decreases
from the Guadalquivir valley to mountain areas located
in the north, south and east of this valley (AEMET, 2011).

Sampling

Accordingly to the high inter-annual variability that
characterized Mediterranean wetlands, zooplankton
samples (branchiopods and copepods) were collected
seasonally during a multi-year sampling (1998-2002 and
2010, representing a great range of weather conditions that
affect Mediterranean wetlands) to obtain cumulative
zooplankton species richness (presence-absence data). In
all cases, samples (integrated composite samples) were
collected along two longitudinal transects, one from the

Fig. 1. Localization of the Alto Guadalquivir region (south of Spain) and wetlands included in the study.
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shore line to the open water, and the other along the shore
line. Sampling strategy allowed us to evaluate the
crustacean assemblages considering the spatial and
temporal heterogeneity characterizing the studied wetlands.
Samples were collected through 63-µm mesh size plankton
net and preserved in situ with 4% formalin (f.c.). Once in
the laboratory, all organisms were identified to species
level, according to Dussart (1967, 1969), Dussart and
Defaye (1995), Einsle (1996), and Ranga-Reddy (1994) for
copepods and Alonso (1996) for branchiopods.

Data analysis

Previous to analysis, wetlands were grouped based on
the criteria obtained by Boix et al. (2005) for
Mediterranean wetlands, according to conductivity and
temporality values. In our case, the scarce number of

saline wetlands in the study area (salinity threshold >5 g
L–1) prevented us from producing two categories in
relation to temporality. Hence, three different categories
of wetlands were identified: i) temporary freshwater-
subsaline-hyposaline wetlands (TFSH); ii) permanent
freshwater-subsaline-hyposaline wetlands (PFSH); and
iii) mesosaline-hypersaline wetlands (MH). 

In order to describe diversity patterns among different
wetland groups, parameters such as singularity and
species richness were estimated. For all parameters,
presence-absence data of total zooplankton species (sum
of branchiopods and copepods), total branchiopods and
total copepods were considered. First, in order to identify
those wetlands characterized by a greater number of
unique species, a singularity index including the complete
dataset, was applied (Boix et al., 2008):

Tab. 1. Characteristics of the studied wetlands, ordered by increasing salinity from freshwater to hypersaline ones. Data obtained from
this study and Ortega et al. (2003, 2006). 

Coordinates Altitude Maximum area Maximum depth Salinity
(UTM) (m) (ha) (cm) (g L–1)

Casasola 30SUG8780 285 3.60 75 0.35
Perales 30SVH9548 757 5.20 105 0.38
Pedernoso 30SWH0047 724 1.40 110 0.45
Mojones 30SVG0877 493 4.50 122 0.51
Orcera 30SWH3542 1270 0.50 172 0.51
Santisteban 30SVH8134 637 3.00 90 0.51
Hituelo 30SVG0679 476 3.80 179 0.54
Fuensanta 30SVG5870 1000 1.30 22 0.56
Rumpisaco 30SVG1077 538 4.00 33 0.56
Siles 30SWH4249 1280 1.30 234 0.59
Nava de la Zarzuela 30SVG3219 1254 0.20 30 0.59
Nava del Hoyoncillo 30SVG2767 1465 0.28 30 0.59
Navas 30SVG0486 378 3.50 223 0.68
Naranjeros* 30SVG0978 508 5.20 456 0.76
Fernandina 30SVH4805 482 0.21 15 0.84
Grande* 30SVG5098 368 22.90 350 1.00
Ardal 30SVH4721 400 0.50 28 1.14
Tobaruela 30SVH4215 363 1.70 70 1.21
Cañada la Cruz 30SWH2713 1582 3.10 32 1.25
Chica 30SVG5098 370 5.80 80 1.25
Castillo 30SWH2357 780 0.60 147 1.33
Ranal 30SVG0697 340 10.70 81 1.42
Argamasilla 30SVG5392 484 4.80 220 1.50
Iruela 30SWG0322 1515 0.15 28 1.50
Villardompardo 30SVG1489 360 1.70 318 1.58
Huelma 30SVG5668 1224 2.00 10 1.66
Muela 30SWH0610 1324 5.40 35 1.76
Casillas 30SVG1084 442 2.70 241 2.15
Garcíez* 30SVG2389 441 7.90 355 3.10
Prados del Moral 30SVG2989 389 4.80 120 3.50
Chinche 30SUG9863 452 4.70 107 4.50
Conde 30SUG9359 412 46.00 120 24.82
Quinta 30SUG8679 289 7.70 199 24.82
Brujuelo 30SVG4191 458 4.20 212 33.19
Rincón del Muerto 30SUG8779 265 4.20 166 82.29
Honda* 30SUG9961 446 9.90 316 86.56

*Permanent wetland.
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(eq. 1)

where S is the index of singularity for one wetland
typology, e is the number of species found in one wetland
typology and not found in other typology, and E is the
total number of species found in this wetland typology.

In relation to the species richness, it is important to
recognize the inherent difficulty for recording all species
in a fauna inventory, especially for the case of
invertebrates (Jiménez-Valverde and Hortal, 2003; Hortal
et al., 2006). As a result, different methods were proposed
in the literature for estimating the number of species in a
given area (González-Oreja et al., 2010). In this study,
two approaches were used to provide valid comparisons
among the inventories of species of the different wetland
groups, and so to evaluate the completeness of crustacean
species inventories. Estimations were performed by
randomised resampling with replacement from a pooled
group of samples; this implies that each species can
appear in any pooled sample. Walther and Moore (2005)
suggested that the generated data are independent of one
another. Samples-based curves were obtained using
EstimateS 8.2.0 software. The first approach was based
on species accumulation curves, in which cumulative
species richness is plotted against the number of samples
(Moreno and Halffter, 2000). Species accumulation
curves were obtained by using EstimateS 8.2.0 software.
Subsequently, Clench equation (Sn) was assigned to
describe the species accumulation model, allowing us to
obtain an ideal function that describes the species
accumulation with the increase of sampling effort
(Soberon and Llorente, 1993; Moreno and Halffter, 2000;
Hortal et al., 2006): 

(eq. 2)

where a is the rate of increase of new species at the
beginning of the inventory, b is a parameter related to the
shape of the curve, and n is the sample effort. Data were
adjusted by using non-linear estimation of Hooke-Jeeves,
using Statistica 7.0 software. This fitting is based on
geometric procedures to minimize the loss function (see
Jiménez-Valverde and Hortal, 2003; StatSoft, 2004). The
parameters of the Clench equation gave us information
about: i) the reliability of our inventories (Ri); ii) the rate
of recorded fauna (Rf); iii) the sampling effort needed to
identify all species (nq); and iv) the total number of
theoretical species present in each wetland type (Nts):

(eq. 3)

(eq. 4)

Sobs: observed species richness
(eq. 5)

q: percentage of recorded species (in our case 90%)

(eq. 6)

In our study we have considered that Ri values lower
than 0.1 indicated that our inventories were near to be
complete (Hortal and Lobo, 2002). In other studies, the
inventories were considered as representative when 70%
of estimated identified species were collected (Hortal and
Lobo, 2002). 

In the second approach, rarefaction curves (Longino et
al., 2002) were used to obtain an estimation of total
zooplankton richness for each wetland group. In particular,
the observed richness (Sobs - Mao Tau), and two non-
parametric estimators, based on presence-absence data sets,
were calculated: i) ICE (Incidence-based Coverage
Estimator); and ii) corrected version of Chao2 (Incidence-
based estimator). The corrected Chao2 version was used
because some problems were detected when the infrequent
species were unique (Colwell, 2005). Both estimators were
calculated with 100 randomizations (Colwell, 2005; Hortal
et al., 2006) and by using the software EstimateS 8.2.0.
Finally, in order to quantify the performance of the above
mentioned non-parametric estimators, we have calculated
bias, precision and accuracy for Sobs (Mao Tau), ICE and
corrected Chao2 [see Walther and Moore (2005) for more
detailed information]. In brief, bias (PAR) reflects under-
or overestimates of the true value of species richness.
Precision (CV) is measured as the coefficient of variation,
without considering if the estimator is biased or not.
Accuracy (SRMSE) takes into account the difference
between the estimated and the total species. The ideal
characteristics for a good estimator are bias values close to
zero and small precision values (Walther and Martin, 2001).

(eq. 7)

(eq. 8)

(eq. 9)

where A is the asymptotic or total species richness
(calculated following Colwell, 2005); Ej is the estimated
species richness for the jth sample; and n is the number of
samples.

RESULTS

Crustacean composition

A total of 60 species (branchiopods and copepods)
were recorded in the Alto Guadalquivir region, belonging
to seven orders (Tab. 2). Twenty-two of the recorded
species were copepods (7 Calanoida, 12 Cyclopoida and
3 Harpacticoida), and 38 were branchiopods (4 Anostraca,
1 Ctenopoda, 32 Anomopoda and 1 Notostraca). A large
number (37%) of rare species (present in only one
wetland) were found (15 branchiopods and 7 copepods
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species; Tab. 2), while only 11% of the total species
number (4 branchiopods and 3 copepods species) were
common (present in more than 20% of the wetlands). 

Biodiversity

Species richness differed between the three wetland
typologies previously mentioned, with the largest number
of species recorded in TFSH (51 species; 4±2 species per
sample), followed by MH (16 species; 3±1 species per
sample) and PFSH (12 species; 3±1 species per sample).
Fig. 2 shows that the highest values of singularity for
branchiopods, copepods and total zooplankton species were
also found in TFSH wetlands. The accumulation curves
obtained by using Clench equation in the different wetland
types (Tab. 3), have reflected that inventories were near to
be completed and could be considered as representative,
with values of reliability below 0.1. The rate of recorded
fauna was around 85% evidencing that sampling strategy
was effective, except for the case of branchiopods in MH
wetlands, with a 73% rate of recorded fauna. In general,
results for the three wetland types have shown that the
species accumulation curves obtained by using both,
observed richness (Mao-Tau) and non-parametric
estimators (ICE and Chao-2) were close to reaching the
asymptote (Fig. 3). This result again confirms that a
significant proportion of species richness has been
effectively surveyed, and they also agree with the values of
reliability, close to 0.1 (Tab. 3). 

Finally, in relation to the quality of the non-parametric
estimators, ICE was the best estimator for predicting
species richness as it was reflected by values which were
less biased, more precise and accurate (Tab. 4). 

DISCUSSION

This study has revealed that Alto Guadalquivir
wetlands are generally characterized by rich crustacean

Fig. 2. Values of singularity obtained for each wetland type.

Tab. 3. Results of species accumulation curves (Clench equation) for the different wetland types. 

Total Branchiopods Copepods

TFSH
Cumulative species richness 51 32 19
R2 Clench model 0.9997 0.9998 0.9992
Reliability of inventory 0.0794 0.0507 0.0285
Rate of registered fauna (%) 85.51 84.88 86.61
Sampling effort necessary to determine 90% of species 135 140 126
Total number of theoretical species 54 34 20

PFSH
Cumulative species richness 12 6 6
R2 Clench model 0.9973 0.9992 0.9917
Reliability of inventory 0.0926 0.0451 0.0478
Rate of registered fauna (%) 83.42 83.61 83.02
Sampling effort necessary to determine 90% of species 38 36 41
Total number of theoretical species 13 7 6

MH
Cumulative species richness 16 12 4
R2 Clench model 0.9990 0.9990 0.995
Reliability of inventory 0.0657 0.0831 0.0040
Rate of registered fauna (%) 86.38 72.56 97.56
Sampling effort necessary to determine 90% of species 59 120 11
Total number of theoretical species 16 13 4

TFSH, temporary freshwaters-subsaline-hyposaline wetlands; PFSH, permanent freshwaters-subsaline-hyposaline wetlands; MH, mesosaline-hypersaline
wetlands.
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assemblages, similarly to other areas of the Iberian
Peninsula (Boronat et al., 2001; Frisch et al., 2006; Fahd
et al., 2009; Gascón et al., 2009; Caramujo and Boavida,
2010), and to other Mediterranean wetlands (Ripley and
Simovich, 2009; Alfonso and Belmonte, 2011). There are
several reasons for explaining why the study area is an
excellent site for analysing the coupling between
zooplankton species richness and composition, with some
forcing environmental factors. First, the high zooplankton
species richness of the study site, with the presence of
several species with special relevance to the Spanish and
Andalusia context such as, Copidodiaptomus numidicus,
a typical species of the North African, Sardinia and
southern Italy fauna, and Neolovenula alluaudi, a species
of tropical and Ethiopic origin (Miracle, 1982; Alfonso
and Belmonte, 2013); and some species endemic to the
Iberian Peninsula such as Alona iberica, Alona salina, and
Daphnia hispanica (Alonso, 1996). Second, the existence,
in this area, of a wide variety of wetland types in a broad
range of ecological gradients (especially in terms of
temporality and salinity, see Ortega et al., 2003; Guerrero
et al., 2006; Gilbert et al., 2014). 

Salinity and hydroperiod are the two main drivers
taken into account when classifying Mediterranean
wetlands (Boix et al., 2005). Previous studies have
observed that salinity and temporality are key factors for
determining crustacean species richness and composition
in Mediterranean wetlands (Alonso, 1998; Marrone et al.,
2006; Brucet et al., 2009). In relation to salinity, we have
found typical species of FSH wetlands in terms of
occurrence (i.e. Chirocephalus diaphanus and Moina
branchiata), and others that appears only in MH ones (i.e.,
Arctodiaptomus salinus, Daphnia mediterranea and
Moina salina; Tab. 2). However, certain species such as

Cletocamptus retrogressus or Metacyclops minutus, with
wide ranges of salinity (Alonso, 1998; Boronat et al.,
2001), have masked this pattern, because these species
appear in a broad range of wetlands. 

Concerning hydroperiod, the scarcity of studied
permanent wetlands, an inherent difficulty of the
Mediterranean climate (Guerrero, 2009) reduces the
probability of finding typical species. Moreover, most of
the species found in permanent wetlands were also present
in temporary ones. Nevertheless we have detected some
differences in the occurrence of zooplankton species
between TFSH (i.e., Moina brachiata, C. diaphanus,
Cyclops sp. 2 and Simocephalus vetulus) and PFSH (i.e.,
C. numidicus and Leydigia leidigii). In saline waters, the
lack of a clear distinction as a function of hydrology
contrasts with other climatic regions for which there is
substantial evidence indicating differences in faunal
composition related to hydrology, hence reinforcing the
idea of the different structure and functioning of
Mediterranean wetlands (Eitam et al., 2004; Álvarez-
Cobelas et al., 2005).

Our results also suggest that increasing overall salinity
has a negative effect on total species richness, since 85%
of the species occur in FSH vs 26% in MH. In fact, it is
well-known that high salinity values increases biota stress,
reducing growth and reproduction rates (Sarma et al.,
2006) and leaving the community with only salinity-
tolerant species adapted to these particular habitat types
(Por, 1980). In relation to composition, the total ratio
copepod: total zooplankton species richness was lower in
saline than in freshwater wetlands, probably due to the
dependency of copepods on less fluctuating
environmental conditions (Brucet et al., 2005, 2006). By
contrast, the total ratio branchiopods: total zooplankton

Tab. 4. Performance of non-parametric estimators for the Alto Guadalquivir data set. 
Total Branchiopods Copepods

Mao-Tau ICE Chao2 Mao-Tau ICE Chao2 Mao-Tau ICE Chao2

TFSH
Predicted species richness 48 50 50 30 31 30 18 20 19
Bias 68.62 85.04 85.04 67.67 82.01 75.41 70.23 89.73 83.57
Precision 27.53 11.69 11.69 27.75 15.10 17.65 27.16 14.59 20.39
Accuracy 0.37 0.18 0.18 0.37 0.22 0.28 0.35 0.17 0.24

PFSH
Predicted species richness 11 13 12 6 6 6 5 7 6
Bias 70.56 99.41 81.67 68.42 87.08 71.27 72.91 110.96 82.59
Precision 24.73 18.67 23.98 25.85 21.78 23.77 23.51 21.98 25.57
Accuracy 0.34 0.18 0.26 0.36 0.23 0.33 0.32 0.26 0.27

MH
Predicted species richness 16 16 15 12 13 12 4 4 4
Bias 70.42 83.26 71.56 58.51 74.22 58.72 87.95 93.17 84.96
Precision 26.08 17.05 22.29 31.65 26.85 29.10 13.30 10.28 10.99
Accuracy 0.22 0.22 0.32 0.45 0.32 0.45 0.17 0.12 0.18

TFSH, temporary freshwaters-subsaline-hyposaline wetlands; PFSH, permanent freshwaters-subsaline-hyposaline wetlands; MH, mesosaline-hyper-
saline wetlands.
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species richness was greater in saline wetlands, reflecting
the higher salinity tolerance of those species in
Mediterranean region (Brucet et al., 2009). 

The natural fluctuations characterizing Mediterranean
wetlands imply a restriction on the assessment of the
species richness in a short-temporal scale. Therefore, the
cumulative richness in a long time-period provides a
larger sample size and so offers a better knowledge of the
species richness composition (Fahd et al., 2009).
Moreover, the application of these models is
recommended when comparing species diversity from
sites that differ in their characteristics (Moreno and
Halffter, 2000), and the probability of finding new species
is improved by increasing the sampling effort (Soberón
and Llorente, 1993). Our results for nine species
accumulation curves (considering a six-year sampling
period), fitted to Clench model, have shown values of
recorded fauna of approximately 85%, except in the case
of branchiopods richness in saline waters, hence
confirming that zooplankton species diversity in the study
area has been properly estimated. The cumulative species
richness in relation to the total number of theoretical
species has differed slightly, except for branchiopods in
saline wetlands. Furthermore, the sampling effort
necessary to achieve this percentage is arduous,
representing a higher effort-cost relationship. Our results
suggest that, similar to previous studies (Vandekerkhove
et al., 2005), the sampling effort must be more intense in
temporary environments with high temporal dynamics
and species turnover rates. By contrast, efficient sampling
effort is likely to be lower in permanent environments
where species replacement occurs slowly. In addition,
Shurin et al. (2007) noted that the determination of
species richness estimated in short time periods was a
good indicator of the biodiversity. In our case, the typical
characteristics of Mediterranean wetlands, where the
species replacement occurs more quickly, justifies the
need for longer time-scale sampling (Fahd et al., 2009).
Despite the advantages offered by the accumulation
curves to determine the number of species, several studies
have demonstrated the suitability of rarefaction curves for
reinforcing these results (Hortal et al., 2006). Three
aspects must be taken into account when applying this
methodology (Walther and Martin, 2001). Firstly, an error
measure associated to an estimator is not very useful.
Secondly, it is necessary to establish an appropriate
sampling unit, and thirdly, the performance of the
estimators depends on the quality of the data. As a result,
and considering that our sampling effort was relatively
low (six-years but only seasonal sampling), the use of two
non-parametric estimators (ICE and Chao2) which are
unbiased and precisely accurate (Hortal et al., 2006)
justified this approach in fluctuating environments.
However, in all cases the most appropriate estimator

(ICE) tended to underestimate the species richness, except
for the case of copepods in PFSH wetlands.

Species richness and singularity were much higher in
temporal than in permanent freshwater wetlands. Similar
results, related to species richness, were documented in
other Mediterranean wetlands (Frisch et al., 2006; Boix
et al., 2008). One likely explanation is the well-known
intermediate-disturbance hypothesis (Connell, 1978)
where recurrent disturbances (alternation of flood and
droughts) favour the removal of dominant species making
the resources available to a larger number of species
(Denslow, 1985). That is, the number of species that can
coexist increases directly with increasing environmental
variance. In this replacement dynamic, the existence of
an egg bank (De Stasio, 1989; Vandekerkhove et al.,
2005; Angeler, 2007; Esteban and Finlay, 2010; Galotti et
al., 2014) could play an important role in the presence of
one or another species. The zooplankton dormant stages
are considered one of the most important elements in the
colonisation process during early temporary pond
succession (Angeler et al., 2008). So these cryptic stages
are an essential part of the zooplankton community for
the maintenance of biodiversity at regional scale in a
context of global change. Furthermore, another plausible
explanation is the presence of vagrants or tourist species,
i.e., rare species which only occasionally appear and do
not belong to the community. These vagrants could
increase artificially the species richness in temporary
wetlands repeatedly sampled. Nonetheless, they may be
important elements in the biodiversity of these ecosystems
because play a significant role on the ecosystem resilience
(Jiménez-Valverde and Hortal, 2003).

CONCLUSIONS

Hydrology and salinity are crucial factors determining
species richness and composition of zooplankton
(branchiopods and copepods) in Mediterranean wetlands.
We have found that the most vulnerable wetlands, the
temporary ones, are unique sites for supporting rare
aquatic species not present in permanent wetlands. As
Collinson et al. (1995) indicated, the conservation of
temporary wetlands should seek to protect all taxa, and
micro-crustaceans should be included in future
conservative legislation. Moreover, it is important to note
that Mediterranean region is considered as a sensitive area
to climatic changes (Sánchez-Fernández et al., 2004).
Although Mediterranean water bodies are characterized
by extreme natural water level fluctuations in response to
irregular precipitation patterns (Álvarez-Cobelas et al.,
2005), global climatic change is projected to amplify this
pattern as a consequence of: i) the increase of
temperatures; ii) the elevation of evapotranspiration rates;
iii) the diminution of precipitation levels; and iv) the
increase of summer droughts (Coops et al., 2003; Angeler,

Non
-co

mmerc
ial

 us
e o

nly



178 J.D. Gilbert et al.

2007; García-Jurado et al., 2012). These fluctuations will
be most pronounced in closed-basin lakes, where the
balance between precipitation and evaporation controls
water levels (Marsh and Lesack, 1996). As a direct result
of all these processes, changes in hydrology (i.e., flooding
period and water permanence) and salinity are expected
(Beklioglu et al., 2007). All these changes would affect
the species that inhabit them, because their ability to adapt
the new environmental conditions is limited, which would
increase extinction rates and the loss of biodiversity
(Hughes, 2000; McCarty, 2001; Walther et al., 2002; Root
et al., 2003). The adequate knowledge about species
composition and diversity that support these systems
would increase our ability to manage them and to
implement efficient conservation strategies that could help
mitigating future effects of global climate change
(Angeler, 2007). Even more, Mediterranean wetlands are
also seriously affected by human impacts (agriculture or
urban development) that induce other forms of stress that
will make more unpredictable and complex the biological
responses to climate change (IPCC, 2007).
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