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INTRODUCTION

“In dealing with any aspect of limnology, as perhaps
any other branch of science, it is impossible to avoid the
thought that no work is perfect and that the greater pro-
portion of published investigations are very imperfect in-
deed. Every one of us is at fault in some way or another,
every one of us must attempt to achieve progressively
higher standards in accuracy, scope and imagination”.

G.E. Hutchinson (1966; The prospect before us)

When the Istituto Italiano di Idrobiologia was
founded 75 years ago, its mission, as indicated in its name,
was the study of freshwater hydrobiology. However, from
the outset the scientists working there took a much
broader approach to research as they were well aware that
inland waters could only be studied from an ecological
viewpoint, that took into account abiotic components
from chemistry to physics and through to climatology
(Baldi, 1942). In addition, our colleagues of that time
were aware of the obvious practical reasons for the study
of inland waters, an essential resource for life on our
planet. Theoretical and applied limnology have therefore
always coexisted within the institute, with one prevailing
over the other on the basis of changing cultural and eco-
nomic demands.

Since its start 75 years ago, the Institute has published
more than 3600 papers, 741 of them in the Memorie del-
l’Istituto italiano di Idrobiologia (issued from 1939 to
1998) and 455 in its continuation, the Journal of Limnol-
ogy (from 1999). The early volumes of the Memorie were
largely in Italian and mainly, but not exclusively, brought
together the results of the institute’s researchers. A number
of leading figures in limnology published important pa-

pers in the journal (Hutchinson, 1959; Margalef, 1965,
1990; Vollenweider, 1990). Over the years the Memorie
became increasingly open to the limnological community
as a whole and addressed an international audience, evolv-
ing into the Journal of Limnology, an open access peer re-
viewed journal, now ranked by IF in 10th place among the
20 limnological journals indexed by ISI.

It is difficult to disentangle the strands of theoretical
and applied limnology within that mass of publications,
because separation is neither always obvious nor always
possible. We made an attempt in this direction by analyz-
ing a few specific issues in order to provide readers with
a tool for assessing the manner and the extent to which
the Institute’s research has contributed to the general de-
velopment of ecology.

Lakes as suitable models for studying
microevolutionary processes and genes expression

Within the context of population studies, perspectives
and potentialities of genetic analyses for limnological
studies have been highlighted since the Institute’s foun-
dation. According to Baldi and Pirocchi (1939), the ap-
parent contrast between cosmopolitanism and
physiognomic insularity of lake biota was addressed as
resulting from different space and time combinations of
basically common components (lake dynamic individual-
ity), in a mosaic-like infinite number of combinations.
Fractionation of species into local forms was attributed to
a genetic peculiarity deriving from the geographic frag-
mentation and insularity of lakes, in a manner similar to
but with better support than suggested by Dobzhansky
(1937) regarding varieties of mollusk shells independent
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from geographical sequences or peculiarities of the envi-
ronment. Such traits were generally regarded as indicative
of lakes being particularly well suited to studies on pop-
ulation genetics and microevolution.

Biological insularity and suitability of lakes for testing
mechanisms of microevolution was further stressed by
Baldi and Pirocchi (1939), who pointed out how local dif-
ferences offered a unique opportunity, even better than
that of terrestrial and marine habitats, for quantifying phe-
notype differences among endemotypes and of their dis-
tribution in relation with geographical distance and
ecological distinctness of sites from which they were
found. The approach proposed by Baldi was, as written
by himself, addressed towards a plastic interpretation of
landscape (similar to Wright’s evolutionary landscapes
or fitness landscapes [1932], metaphors used to attempt
to explain how a population may move across an adaptive
valley to a higher adaptive peak). This approach was ap-
plied for the first time to study the fragmentation of a pop-
ulation into genetically distinct subpopulations in Lake
Maggiore, specifically the copepod species Mixodiapto-
mus laciniatus Lill. (Baldi et al., 1945a) thanks to the con-
tributions of Buzzati-Traverso and Cavalli-Sforza who
joined Baldi and his assistant Livia Pirocchi in their study
of lake plankton populations (Buzzati-Traverso and Ca-
valli, 1945). This is the first study documenting scientific
cooperation between Italian population geneticists and
limnologists and it was no coincidence that it looked at
zooplankton, on which Pirocchi had focused interest in
quantifying population fractionation by means of mor-
phometry, quantitatively analysed thanks to cooperation
with Cavalli and Tonolli (Baldi et al., 1949), and which
were assessed with statistical techniques by Cavalli
(1949). Such collaboration was also facilitated by the fact
that during the Second World War the pair were accom-
modated and hidden at the headquarters of the Institute,
Villa De Marchi. They were assisted in investigating their
specific fields and experimental organisms of interest and
supported in publishing the results of their experimental
and review studies regarding general issues in biology
(Buzzati-Traverso, 1945). Although covering a relatively
short time window, these studies pioneered modern inter-
est in lakes as laboratories for studying microevolutionary
patterns. Such interest was clearly expressed, once more,
by Baldi (1950). 

Studies on taxa diversity, abundance, spatial and
temporal distribution

Studies on taxa diversity, abundance, spatial and tem-
poral distribution, were at first largely devoted to plankton
organisms, particularly those of Alpine aquatic environ-
ments. Not only lakes, but also ponds were included, as
sources of endemic and rare organisms, classified through
diagnostic traits in morphology and size. The early re-

search shows a gradual transition from a descriptive, nat-
uralistic approach to a truly ecosystemic approach to the
study of lakes, assessing the various biotic and abiotic
components of the ecosystem and relating them both to
each other and to the characteristics of the surrounding
territory (Baldi, 1941, 1942; Baldi et al., 1945b). In the
fifties, progress in limnological knowledge was made pos-
sible thanks to increasingly sophisticated sampling tech-
niques and the use of appropriate new sampling tools
(Tonolli, 1951, 1954), along with awareness of, for exam-
ple, vertical and horizontal heterogeneity of organisms,
similarly to that already observed in marine plankton. Ex-
tensive studies were carried out to compare abundance
and distribution of plankton populations and to investigate
among-site phenological differences, and their seasonal
changes. Results of these studies became classics, not
least with Bossone and Tonolli (1954), among the first to
prove with field data the validity of ecological theories,
namely (invertebrate) predation allowing coexistence be-
tween closely-related, competing species. The study in
fact dealt with the zooplankton of an Alpine lake, in which
fish predation could be ruled out. This, as well as studies
such as the one by Ravera (1955) on the seasonal succes-
sion of plankton copepods in Lake Maggiore, including
the contribution of different developmental stages to
species population density, and their resulting from dura-
tion length and stage-specific mortality, are classics in
limnological literature. Hutchinson used figures included
therein to illustrate patterns and mechanisms driving
plankton seasonal succession in his Treatise on Limnology
(1957). Incorporating results of limnological studies car-
ried out at the Institute was the sign that Pallanza was be-
coming a focal point in limnological network, the
outcome of intense scientific relationships with scientists
who were developing and summarizing basic concepts in
limnology. The cultivation of the scientific exchange of
ideas at an international level, which is testified by exten-
sive documentation now arranged in a well-established
archive in the Institute’s library, was the foundation on
which the Institute’s international reputation was built.
This is why Hutchinson’s classic paper defining the mod-
ern concept of ecological niche was published in the
Memorie (Hutchinson, 1959). Hutchinson’s definition of
a multidimensional niche provided the newborn science
of ecology with a unit of study, while promoting research
efforts to quantitatively investigate physical and chemical
variables and their seasonal changes and to identify those
of key importance for understanding changes in the scene
of the ecological theatre (Hutchinson, 1965). Such efforts
are documented in early studies on, for example, oxygen
concentration (Herbert, 1954), and on how thermal con-
ditions could affect growth and development of lake or-
ganisms. The importance of temperature as key variable
regulating rates of development and growth of het-
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erotherms, proved under laboratory conditions, was used
to develop, for example, the egg ratio method for estimat-
ing reproductive rates in field populations (Edmondson,
1960). Edmondson’s study pioneered later developments
in studies on population dynamics and on mathematical
models for investigating populations of species of un-
known age and continuous growth, such as those of plank-
ton cladocerans and rotifers (e.g., King, 1967; Kwik and
Carter, 1975; Allan, 1976; George and Edwards, 1974;
Starkweather et al., 1979).

Studies on plankton ecology and population dynamics

Studies on dynamics of plankton populations were the
basis on which hypotheses regarding the role of both bi-
otic and abiotic variables were identified for testing under
natural and laboratory conditions. First of all, we cannot
neglect the phytoplankton studies of the ‘70s conducted
together with the stimulating and enthusiastic Japanese
colleagues on photosynthetic activity of phytoplankton,
cell size and bacteria interactions (Kurata et al., 1976;
Ruggiu et al., 1979). This ecological aspect was fully em-
braced by the group and fitted in well with their own
awareness of the need for a more holistic view of limno-
logical studies. Quantitative data on demographic and re-
productive parameters of zooplankton populations from
Lake Maggiore also provided a basis for developing math-
ematical models (Argentesi et al., 1987) in which seasonal
changes in population standing stock density and zoo-
plankton biomass could be analyzed in terms of changes
in mortality and fecundity rates. By applying age-specific
compartmental models, the specific impacts of different
environmental cues, such as food quality, temperature,
fish- and invertebrate- predation could be identified.
Background information and an incentive for studying
size and age specificity of biotic interactions was provided
by the publication of the Size Efficiency Hypothesis
(Brooks and Dodson, 1965). To achieve this, documentary
evidence was arranged and summarized to define size-
specificity governing biotic and abiotic interactions within
and between plankton populations (Peters, 1985). The
contribution of research studies at the institute was also a
consequence of the fact that pioneering studies on fish diet
had allowed fish predation to be seen as responsible for
shifts in size structure of plankton communities (Giussani
and de Bernardi, 1977). The use of mathematical models
developed within studies on Lake Maggiore zooplankton
also provided a basis for regarding demographic and re-
productive parameters of key zooplankton populations
(e.g., Daphnia), as tracers for environmental variables.
They allowed for the suggestion that biotic interactions
are by far the most important factors in regulating com-
munity structure (de Bernardi et al., 1987; Manca and Co-
moli, 1995a; Manca and DeMott, 2009). They supported
a view in which open-water plankton organisms were re-

garded not only as affected by, but also affecting the, abi-
otic properties of the environment: at least in the open
water, community structure modifies the abiotic environ-
ment (de Bernardi, 1981).

Other than independent entities, as in, for example,
Forbes’ perspective of lakes as microcosms, or as part of
basin/catchment basin level, lakes were regarded as an ex-
ample of fragmented ecosystems, in which local biodiver-
sity could be linked, for example, to transport of resting
stages by migratory birds (LAKeS Long-distance dispersal
in Aquatic Key Species Project ENV4-CT97-0585;results
summarized in Acta Oecologica, 2002; http://www. sci-
encedirect.com/science/journal/1146609X/23/3). Popula-
tions of Cladocera and aquatic plants were studied at the
river catchment basin level, which was regarded as a re-
gional unit where a group of connected populations of a
given species resulted from the dynamics between in-
creases (births and immigrations) and decreases (deaths and
emigrations) of individuals, as well as by the emergence
and dissolution of local populations contained within it. By
including river catchments located inside and outside the
main waterfowl migration routes, the role of local environ-
mental conditions and of bird-mediated transport were in-
vestigated for their relative importance in population
maintenance of widely distributed aquatic organisms, and
for their influence on both biodiversity and gene fluxes. As
the migratory patterns of waterfowl are significantly altered
by climate change, the project aimed at providing quanti-
tative estimates for researchers involved in modelling the
biotic consequences, and predicting the impact of changes
in bird migration patterns in Europe on the intra-specific
biodiversity of aquatic ecosystems, which could be used in
the conservation and management of aquatic biodiversity. 

The aquatic microbial ecology of freshwaters

The role of prokaryotes in biogeochemical cycles was
soon recognized in the development of microbiology. How-
ever, in the study of inland waters prokaryotes have re-
ceived relatively little attention compared to the interest in
eukaryotes of microscopic size. The cause must be sought
in the methodological problems rising when studying mi-
croorganisms in very diluted environments such as lakes.
The methodological constraints long restricted the study of
aquatic microbial ecology to research into the cultivable
forms of bacteria growing on rich media, addressing human
health rather than ecological issues. However, the signifi-
cance of water microbes was so obvious that as early as the
first volume of the Memorie, published in 1942, a paper ap-
peared dealing with a group of bacteria typical of freshwa-
ter ecosystems (Redaelli and Ciferri, 1942). 

Studies of the energy source for heterotrophic prokary-
otes, that is, the organic matter dissolved or suspended in
water, also made slow progress due to the analytical diffi-
culties involved in investigating such a complex and diluted
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pool of molecules. However, the institute made a very early
contribution to research into the organic chemistry of sedi-
ments and lake waters, providing a first screening of the al-
lochthonous organic molecules in the waters and sediments
of Lake Maggiore (Povoledo, 1959a, 1959b). The following
decade brought results that shed new light on the ecology
of bacterioplankton. It emerged that although only 1% of
aquatic bacteria visible under the optical microscope can be
cultivated using traditional methods, the non-cultivable frac-
tion is also active and can grow on liquid culture media con-
taining little carbon. In other words, in waters such as Lake
Maggiore, a very large portion of the bacterial community
is oligocarbophilic, and grows slowly on very diluted media
(Melchiorri-Santolini and Cafarelli, 1967). This finding has
led scientists to look for relationships between bacterio-
plankton and other components of the food chain, obtaining
evidence, if not of causal relationships at least of temporal
trends to some extent converging with that of phyto-and
zooplankton (Melchiorri-Santolini, 1967; Goldman et al.,
1968). The relationships between organic detritus and bac-
terial populations were recognized and widely debated in
the symposium on Detritus and its role in aquatic ecosys-
tems, held at the institute in Pallanza in 1972 (Melchiorri-
Santolini and Hopton, 1972) within the context of the
International Biological Program. It was necessary to wait
until the mid-Seventies to obtain reliable estimates of the
concentration of organic substrate in Italian subalpine lakes
and collect analyses of bacterial activity capable of provid-
ing a first realistic estimate of the mass and energy transfer
within the microbial food chain in Lake Maggiore (Mel-
chiorri-Santolini et al., 1975; Bertoni, 1976).

Meanwhile, commercial instruments for the determi-
nation of particulate and dissolved organic carbon became
available, enabling the routine measurement of the energy
supply for bacteria present in lakes. More selective tech-
niques for microscopic counting of bacteria, using vital
dyes and epifluorescence microscopy, also became wide-
spread thus making the routine acquisition of data on the
bacterioplankton abundance easy. The evaluation of the
long-term evolution of the microbial food chain in relation
to climatic changes became thus possible and research on
this issue started. The new analytical techniques and the
results obtained with them expanded our view of the
aquatic microbial world, highlighting the presence in the
microbial food chain of other organisms in addition to
bacteria. The term picoplankton was coined to describe
every microorganism, autotrophic and heterotrophic, with
sizes between 0.2 and 2 µm.

The interest of microbial ecologists has expanded
worldwide from bacteria to heterotrophic picoplankton and
through to picocyanobacteria, the main constituents of au-
totrophic picoplankton. These organisms, neglected in tra-
ditional phytoplankton studies but clearly visible in
epifluorescence microscopy, can be of huge importance as

primary producers in oligotrophic lakes such as Lake Mag-
giore, where they can account for 80% of the total primary
production (Callieri and Stockner, 2000; Callieri, 2008).
The climate change issue also captured the interest of
aquatic microbiologists given that such change affects the
autotrophic and heterotrophic microflora through the mod-
ification of the underwater temperature and radiation. Re-
search on the effects on picoplankton of the underwater
photosynthetically active radiation (PAR) and of ultravio-
let (UV) radiation has therefore received much attention.
This research has highlighted the changes in the activity
and in the morphology of the autotrophic and heterotrophic
picoplankton with increasing intensity of the UV radiation
and with modification of the spectral composition of the
underwater PAR (Callieri et al., 1996; Vörös et al., 1998;
Bertoni and Callieri, 1999; Modenutti et al., 2005; Corno
et al., 2009; Callieri et al., 2011). Our ability to analyze
the microbial world received a considerable boost from
molecular biology, and particularly from DNA amplifica-
tion and analysis techniques. Such tools made it possible
to identify the non-cultivable microorganisms and to assess
the evolution in space and time of the two domains in-
cluded in picoplankton: Bacteria and Archaea. The last
group, once considered as extremophilic organisms, can
also be mesophilic since they have been found in many
lakes, including the deep subalpine lakes, where they con-
duct important metabolic activities in the nitrogen and car-
bon cycles. Archaea are more abundant in the hypolimnion
while Bacteria dominate the epilimnion, and this niche dif-
ferentiation is related to different ecological requirements
of the two domains. The Archaea are extensively involved
in the nitrogen cycle, their organic substrate requirements
are lower than those of bacteria and they also synthesize
organic matter from inorganic carbon in the deeper aphotic
layers of water bodies. This activity observed in marine
environments has been confirmed for the first time in a
lake with measurements made in the deep hypolimnion of
Lake Maggiore and contributing in no small part to the
productivity of the lake hypolimnion as a whole (Callieri
et al., 2014).

It is now possible to study the phylogeny of het-
erotrophic and autotrophic picoplankton comparatively,
inserting the microorganisms studied in Lake Maggiore
in the broader context of the global microbial biodiversity
(Callieri et al., 2012, 2013). The long-term series of data
on the microbial food chain has made it possible to high-
light the ecological changes of Lake Maggiore over the
past 30 years, evaluating the different impact of climate
change and of direct human impact on the ecosystem. The
latter proved to be more significant than climate change
and therefore cannot be taken as an excuse for abandoning
the practices of good management of the lake adopted and
maintained at regional level (Bertoni et al., 2010). It has
also been found that climate change, and in particular its

Non
-co

mmerc
ial

 us
e o

nly



975 years of limnology at the Istituto Italiano di Idrobiologia

effects on meteorological events, can cause unusual
changes in lake water level, as a result of heavy rainfall
and drought periods different from those in the past by in-
tensity and seasonal distribution. These level changes in-
fluence, along with the drainage of the catchment area and
the changing thermal conditions of the lake, the develop-
ment of potentially toxic cyanobacteria in oligotrophic
lakes such as Lake Maggiore. 

Finally, the today available techniques have made it
possible to assess the spatial heterogeneity of microbial
food chain across the whole surface of Lake Maggiore. This
allows the contextualization of the historical measurements
carried out in a few spots on Lake Maggiore, which is in
fact characterized by a gradient of increasing trophic levels
along the north-south axis (Bertoni et al., 2004).

Studies on lake trophic status and trophic evolution 

Along with confronting and contributing to ecological
theories, limnological studies have had to deal with the
increasing awareness that lakes could be endangered by
chemical pollution and by receiving a surplus of algal nu-
trients carried via rivers and coastal cities, that causing
algal blooms (Ravera and Vollenweider, 1968). Such
awareness promoted integrated programs aimed at quan-
tifying lake productivity and finding best suitable vari-
ables for across-lake comparisons, to define water quality
and ecosystem health (e.g., Vollenweider, 1959). Meas-
ures of primary productivity had been established at the
Istituto since the mid fifties, just a few years after the in-
troduction of 14C method for measuring phytoplankton
primary productivity. Lake Maggiore was among the first
freshwater environments where the 14C method was ap-
plied (Vollenweider and Nauwerck, 1961) and in 1965 the
Institute hosted the International Biological Programme
(IBP) symposium on Primary productivity in aquatic en-
vironments (Goldman, 1966). In the same period the sci-
entific basis of lake eutrophication, with particular
reference to phosphorus and nitrogen as eutrophication
factors, were studied (Vollenweider, 1965), thus providing
a mathematical basis for lake management implementa-
tions (Vollenweider, 1968, 1976). 

The concerns about the decline in water quality due to
eutrophication also promoted the initiation of long-term
monitoring programs on lakes. Since the 1970s the institute
has been involved in the program for monitoring Lake
Maggiore funded by the International Commission for the
Protection of Common Italian and Swiss waters (CIPAIS;
Mosello et al., 2011). This was fundamental for plans to
study lakes at the level of their catchment basins and to
quantify specific contributions of tributaries to chemical
loadings carried to lakes (Mosello et al., 1991; Rogora et
al., 2006). At the lake level, physical and chemical limnol-
ogy were joined by studies on plankton populations, includ-
ing bacterioplankton. The lake-watershed approach also

allowed for regarding large, deep subalpine lakes as being
contributed to by a large number of mountain lakes, in
which reserves of species composing, for example, the zoo-
plankton, including glacial relicts, could persist under un-
altered environmental conditions. Initiating a monitoring
program on Lake Maggiore was essential to draw policy-
makers’ attention to the need to prevent deterioration of
water resources. It was also an important step for substan-
tially contributing to the growth of knowledge on lake func-
tioning patterns and mechanisms (Guilizzoni et al., 1996;
Guilizzoni et al., 2011; Marchetto et al., 2004). Monitoring
is often regarded as a purely descriptive exercise; however,
it provided a basis on which general patterns in seasonal
dynamics of plankton compartments could be identified
and studied, as well as lakes’ trophic evolution, such as in
the case of Lake Maggiore (Sommer et al., 1986; Ruggiu
et al., 1998; Manca and Ruggiu, 1998; Bertoni and Callieri,
1992; Manca et al., 2007; Morabito et al., 2012; Morabito
and Manca, 2013). It also provided the series of long-term
data that have allowed to establish some of the subalpine
lakes studied by the Institute as research sites inside the Eu-
ropean Long Term Ecological Research network (LTER;
http://www.lter-europe. net/networks/italy/LTER_ITA_
Sites). The monitoring allowed for detecting anomalous,
exceptional events, and for addressing their effects on dif-
ferent ecosystem compartments, therefore revealing mech-
anisms through which aquatic ecosystems function and are
modified by climate change (e.g., Visconti et al., 2008;
Manca et al., 2000). 

Along with detection of present trophic status, it was
highlighted a need for studying trophic evolution and re-
constructing pre-eutrophication conditions in as many as
possible lakes, also in view of their reliable restoration.
To this end, paleolimnological studies were started and
sediment cores increasingly used as historical archives of
changes in lakes and their catchment basins, a knowledge
source for addressing impacts of different perturbations
and for integrating and implementing long-term limno-
logical data (Manca and Comoli, 1995b; Marchetto et al.,
2013; Guilizzoni et al., 2012; Guilizzoni, 2012).

Starting from 1978 with the participation in the CNR
Finalized and Strategic Project on eutrophication, lake
sediment cores provide a unique record of environmental
changes (eutrophication, acidification) for many Italian
ecosystems (sub-alpine, alpine and crater lakes). The
most investigated proxy-records and their application to
monitoring and plankton dynamics programmes were
analysed and discussed in many papers with particular
emphasis on the biological remains. Particular promi-
nence was given to fossil pigments (chlorophyll deriva-
tives and carotenoids) as a proxy for past phototrophic
communities and primary production, and as biomarkers
of environmental changes (Guilizzoni and Lami, 2002).
The palaeolimnological techniques were proven to be a
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useful way of improving our understanding of human-
climate ecosystem interactions (Guilizzoni and Oldfield,
1996), and for detecting trophic reference conditions
(following the European Water Framework Directive,
WFD) mainly using sub-fossil diatoms and pigments
(Guilizzoni et al., 2011). Following an initial phase of
predominantly descriptive studies, the palaeolimnolog-
ical studies at the institute focused on developing and
improving numerical analysis for quantitative ap-
proaches (Marchetto and Bettinetti, 1995). For diatoms,
pigments and chrysophytes, transfer functions have been
developed from calibration or training sets of modern
surface sediment samples collected along environmental
gradients (e.g., ecological parameters such as tempera-
ture, water pH, nutrients).

Awareness of water resources and of their progressive
deterioration promoted efforts aimed at detecting trophic
status and measuring to what extent physiological
processes of lake ontology (natural eutrophication) were
accelerated by means of non-prudent exploitation of re-
sources by humans. Such awareness promoted the funding
of projects (by the National Research Council) that the in-
stitute, with its director Livia Pirocchi Tonolli, helped plan
from the outset. Monitoring of water resources was ex-
panded to include reservoirs, which were built to meet
water demand in regions of the country where water avail-
ability was constrained by an extremely variable precipi-
tation regime, a prevailing torrential regime of its
waterways (CNR Finalized and Strategic Project on eu-
trophication), and increased water demand (for tourism)
during summer (e.g., Sechi and Lugliè, 1992).

Restoration plans successfully promoted reversal to
lower trophic status through abatement of phosphorus
loadings into lakes and rivers by sewage treatment plants
and a reduction of phosphorus in detergents (Mosello et
al., 2011; de Bernardi et al., 1990). However, monitoring
of restoration plan effects, made it clear that the eutroph-
ication reversal expected after the decrease in nutrient
loading and in-lake concentration did not result into a re-
establishment of pre-eutrophication biotic communities.
The establishment of new, post-reversal communities was
not as prompt as chemical restoration: resilience was de-
tected in plankton diversity and community structure in
response to phosphorus abatement and chemical restora-
tion. Comparison of common patterns and peculiarities in
different lakes allowed for identifying paths and mecha-
nisms responsible for predictable/unpredictable responses
of the biota to eutrophication reversal (Sas, 1989; Jeppe-
sen et al., 2005). Variability of time lag in response, de-
pending on trophic position, growth and developmental
times of organisms involved, suggested that understand-
ing and predicting recovery processes could not be
achieved without assessing ecological roles of the organ-
isms in the environment. 

Studies on lake pollution and acidification 

Increasing environmental concern over acid rain and
the acidification of waters consequent to anthropogenic
atmospheric pollution on a global scale resulted in the
development, from the early 1980s, of a 20-year research
effort within programs funded by the European Commis-
sion, Directorate General for the Environment (DG-En-
vironment). The Institute’s contribution, initially devoted
to hydrochemistry of lake water and of atmospheric dep-
ositions (Marchetto et al., 1994, 1995; Mosello et al.,
1990), gradually expanded to also include various aspects
of the biota, from microbial populations to fish
(Straškrabová et al., 1999). In particular the Italian Net-
work on Acid deposition (RIDEP) was established in Pal-
lanza. Research focused mainly on alpine environments,
as relatively simple systems in which direct and indirect
effects of acidification on lake ecosystem structure and
functioning could be investigated, by means of multidis-
ciplinary approaches, including paleo- and neo-limnolog-
ical methods. lakes in the Alps, Pyrenees, Tatras (Western
Carpathians), Retezat (Southern Carpathians) and Rila
Mountains (Balkans) (in a total of 235) were included
into a space-for-time substitution study approach in
which a wide range of environmental conditions could
be simultaneously represented. Within a series of EU-
funded projects focusing on mountain lakes (e.g., AL:PE,
AL:PE2, MOLAR, EMERGE), lakes in the Alps were
compared to those in other mountain regions of Europe
(Marchetto and Rogora, 2004). This extensive effort to
compare biotic communities of different sites lead to syn-
theses in which the relevance of different variables, rep-
resentative of lake size, tropho-dynamic status, acid-base
balance and ice-cover duration (i.e., altitudinal gradient)
could be investigated among and within taxonomic
groups (Catalan et al., 2009). For each of these variables,
thresholds were identified, above and below which
ecosystem organisation was found to change substan-
tially. It was found that most assemblages respond to a
complex environmental mosaic, rather than to single
variables (Marchetto et al., 2009). Overall, programs on
lake acidification resulted in a substantial progress in
quantitative typologies for environmental quality and
biodiversity conservation programmes, and in improving
predictions about global change impacts. Studies on acid
rain and its impact on aquatic ecosystems changed the
view of lake pollution, from site-specific to global, in-
volving a long-distance transport which was, contrary to
expectations, considered to affect remote, high mountain
lakes, rather than, or in addition to, those more vulnerable
to direct human impacts (Camarero et al., 2009; Lami et
al., 2000; Lami et al., 2007; Rogora et al., 2008). Such
awareness lead to the development of limnological and
paleolimnological projects dealing with high altitude en-
vironments, including terrestrial, in addition to aquatic,
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ecology, partly promoted by means of the Ev-K2-CNR
Committee (Lami et al., 2010). 

Initial concern over chemical pollution, particularly by
heavy metals, largely focused on a national level and within
the institute on Lake Orta, since Rina Monti’s first studies
(Monti, 1930), in which progressive depletion of life was
detected along with the discharge of huge amounts of copper
ammonia and sulphate into the lake. Lake Orta was also a
case study for acidification, holding the dubious distinction
of being the largest acidified lake in the world. Lake Orta,
in which heavy metal pollution was also accompanied by
acidification, was also among the most advanced and suc-
cessful examples of how the scientific community was able
to impact both policy makers and citizens, promoting recov-
ery plans while developing an awareness of being ecosys-
tem-sound exploitation of water resources economically
advantageous (Calderoni et al., 1992). The role the institute
played was also important in promoting the establishment
of international thresholds for preventing damage by in-
creased heavy metal concentrations in aquatic environments
(BCR Reference materials). At a national level, it also pro-
moted approval by the Italian Parliament of a law that offi-
cially introduced constraints on water use to prevent water
quality deterioration (Merli’s Law, 10 May 1976, n. 319).

A point source of DDT pollution of industrial origin,
discovered in Lake Maggiore in 1996, created concern,
because contamination in some fish species exceeded the
threshold for human consumption, even though the con-
centrations measured in the water were much lower than
the legal requirements for drinking purposes (Galassi et
al., 2006). This contamination posed serious threats to
both top predators and fishery activities (Bettinetti et al.,
2005). The Institute has been involved from the outset in
the DDT pollution monitoring on behalf of the Interna-
tional Commission for Protection of Common Italian
Swiss Waters (CIPAIS) (Guilizzoni, 2013). The monitor-
ing project also focused on Stable Isotope Analyses of
zooplankton, to investigate the transfer of pollutants to
planktivorous fish. Zooplankton accumulate organochlo-
rine compounds more rapidly than fish and respond much
faster than their predators to fluctuations of pollutants oc-
curring in the water column (Bettinetti et al., 2010), there-
fore proving successful in predicting the contamination
of a freshwater environment (Bettinetti et al., 2012). Sta-
ble Isotope Analysis was recently extended to calculating
Trophic Magnification Factors (TMFs) of novel bromi-
nated flame retardants, HBCD, and PBDEs in zooplank-
ton and fish from Lake Maggiore (Poma et al., 2014).

Lakes as sentinels, integrators, and regulators
of climate change

Awareness of a need to study the consequences of
global warming on aquatic environments promoted re-
search at the institute aimed at understanding how the in-

crease in air temperature might affect water temperature
and lake hydrodynamics, as well as the impact on biotic
communities. Such interest could benefit from the already
established long-term studies on physical limnology and
tightly linked to measuring of meteoclimatic variables.
Research by the physical limnology group allowed for de-
tecting across-lake consistency of warming trends in deep
lakes causing heat accumulation in hypolimnetic layers
and changes in winter mixing depth over the last decades
(Ambrosetti and Barbanti, 1999). These studies also pro-
vided the basis on which between-year variability in pop-
ulation phenology could be traced along with long-term
changes in plankton communities (e.g., Salmaso, 2005).
The long-established approach of studying lakes along
with their tributaries also allowed for detecting and quan-
tifying frequency of occurrence, duration and intensity of
extreme rainfall events into the Lake Maggiore catchment
basin (Saidi et al., 2012). Intensive efforts to resurrect pre-
cipitation data since the early 1920s contributed to our
present knowledge of, for example, the extent to which
increased frequency of short-term, intense rainfall ex-
treme events impacts the western central subalpine region
(Saidi et al., 2013). This goal is vital for preventing cata-
strophic effects of climate change and to define correct
threshold risks for human safety and for the correct di-
mensioning of human infrastructures. The impact of
warming was mainly investigated in terms of understand-
ing and modelling effects on lake hydrodynamics, and the
possible impact of changes in, for example, water mixing
on biological communities, not least the phytoplankton
(Salmaso et al., 2012) and fish (Jeppesen et al., 2012).
Research on meteoclimatic variables at a regional level
focused more intensively on rivers and streams, and on
modelling how, increased occurrence of water level fluc-
tuations impacts landscape, biotic communities, human
activities and security, by substantially changing hydrol-
ogy of waterways (Apel et al., 2004).

While being increasingly solved in areas of the world
where it was first detected, eutrophication is a major con-
cern in countries where a rapid economic development
has been promoted. Meanwhile, occurrence of eutrophi-
cation-like phenomena in restored freshwater environ-
ments has become increasingly evident, as a consequence
of global warming (Schindler, 2001; Visconti et al., 2008).
The interaction between trophy and climate is the chal-
lenge we are facing at the global level; this challenge is a
unique opportunity for understanding specific paths and
mechanisms promoted by climate and nutrient changes,
which may result in apparently overlapping, common pat-
terns (Salmaso et al., 2007; Morabito and Manca, 2013).
With respect to the past, however, the perspective via
which eutrophication, its reversal and interaction with cli-
mate change are analyzed focuses far more closely on
functional in addition to taxa-specific approaches, broadly
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accepted as the best for understanding impact, containing
detrimental effects and preventing non-reversible dam-
ages to aquatic ecosystem functioning (Moss et al., 2009).

Present and future challenges

This necessarily brief and limited analysis of the in-
stitute’s contribution to limnology and ecology inevitably
concludes with a look at the work in progress and at the
future goals as the institute is still in development and its
research strategies have evolved to take into account the
methodological developments of recent years. Closely
linked to what has been developed during its history, the
Institute is now called upon to make a substantial contri-
bution to research studies on climate change, and water
demand, in particular on the role of deep lakes as reser-
voirs. Climate change and biological invasions are also a
key point on which the institute is qualified to investigate
(e.g., Riccardi et al., 2004; Riccardi and Giussani, 2007;
Kamburska et al., 2013) also thanks to the availability of
an excellent database (e.g., Boggero et al., 2014). 

Resurrection ecology

The discovery of sediment cores as a source for res-
urrecting organisms from the past (resurrection ecology;
Kerfoot et al., 1999; Kerfoot and Weider, 2004; Frisch et
al., 2014), offers a unique opportunity for quantifying
changes in diversity, taxa composition and life strategies
of aquatic populations in response to natural and anthro-
pogenic disturbances, adding a dynamic dimension to
palaeolimnology (Jeppesen et al., 2001; Guilizzoni,
2012). The hatching of ephippial eggs isolated from sed-
iments of a known age allows for reconstructing changes
in life history traits associated with environmental pertur-
bations, included exposure to toxic conditions. The pos-
sibility of raising hatchlings obtained from ephippial eggs
allows for comparing past vs present populations, to see
how they perform in laboratory experiments simulating
time-specific environmental conditions. Resurrecting an-
cestors for transgenerational tests represents a new exper-
imental approach to paleolimnology, answering the
vexing question of how to test paleolimnological infer-
ences directly (Kerfoot and Weider, 2004). Indirect esti-
mates of past populations to compare their performance
with respect to contemporary ones, under past and present
conditions allow for detecting changes in level of toler-
ance along with, and for identifying mechanisms respon-
sible for the essential ability of species/clones to compete
and survive under different perturbations, included heavy
metal pollution (Piscia et al., 2014; Frisch et al., 2014). 

Among ephippia-producing cladocerans, species of the
Daphnia genus are very suitable for resurrection ecology:
easy culturing and well established methods for hatching
ephippial eggs are coupled with a crucial role in transfer of

matter, energy and pollutants, through the pelagic food web.
Daphnia has long been a model organism in ecotoxicology,
and in the most recent developments of environmental ge-
nomics, aimed at understanding genome-environment in-
teractions (Colbourne et al., 2011). Because of a fast
population growth rate, as many as 30 successive Daphnia
generations may live and die in a lake in a single year. A
sediment section dating back half a century ago, for exam-
ple, allows for comparing life history patterns of organisms
from around 1500 generations ago with respect to those
currently living in the same environment. The span of living
eggs retrieved from sediment cores conforms nicely to the
time frame of microevolutionary responses (i.e., multiple
generations), therefore offering indirect evidence for mi-
croevolutionary changes along with environmental condi-
tions (e.g., Kerfoot and Weider, 2004; Frisch et al., 2014).

Functional diversity

Functional approaches quantifying diversity by means
of organisms’ functional traits are increasingly applied to
aquatic ecosystems, also in view of understanding and pre-
dicting how the system will be able to maintain its opera-
tional properties (sensu Moss et al., 2009) under increasing
perturbations causing changes in taxa diversity and com-
position. Functional-based studies are proposed as alterna-
tive or complementary to classic, taxonomy-based
approaches for example. Species-specific functional traits
allow for the defining of species by their ecological roles
(Barnett et al., 2013) or by what they do in the ecosystem
(Moss et al., 2009), thus contributing to identification of
the trophic niche (Elton, 1927; Leibold, 1995).

Despite the importance of the subject, there is no con-
sensus on how to quantify functional diversity within a
community and relationships between various indices
have not been yet established (Mouchet et al., 2010). A
methodology widely used to quantify organisms’ trophic
roles and trophic interactions is C and N Stable Isotope
Analysis (C,N SIA). Carbon isotopic signature (δ13C) of
a consumer reflects its source of dietary carbon (Peterson
and Fry, 1987; Post, 2002), whereas nitrogen isotopic sig-
nature (δ15N) is used to detect its trophic role (Minagawa
and Wada, 1984; Post, 2002). Combined measurements
of δ13C and δ15N are used to examine how basal carbon
source(s) of food web(s) is stepwise transferred through
trophic levels. In a functional-based perspective, C and N
isotopic signatures allow for identifying ecological rela-
tions (competition and predation, among-taxa vicariance
and redundancy) and defining functional groups within
and between ecosystem compartments. Stable Isotope
Analysis may be regarded as a molecular approach
(Strayer, 2010) used as a functional approach (i.e., oper-
ational, sensu Moss et al., 2009; Barnett et al., 2013;
Kuwae et al., 2012). Often restricted to one or few time
spots, SIA is increasingly applied to investigate seasonal
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dynamics in lakes. Interest in applying SIA seasonally is
consequent to awareness of aquatic environments being
highly variable over time, an attribute deriving from the
intrinsic nature of the aquatic medium (Bozelli et al.,
2008). Seasonal succession is increasingly regarded as not
only taxa-, but also ecologically and functionally inform-
ative. Carbon and nitrogen stable isotope analyses have
been recently applied to Lake Maggiore monitoring, to in-
vestigate seasonal changes in taxa-specific crustacean
zooplankton and main planktivorous fish, for highlighting
changes in ecological roles and exploitation of carbon
sources (Visconti et al., 2014). Bottom-up vs top-down
control mechanisms were identified with carbon mainly
driven by the former and nitrogen stepwise-enrichment of
pelagic preys linearly decreasing with size-specific pre-
dation pressure, overall suggesting longer food webs
being proportionally less stepwise-enriched than shorter
ones. Isotopic signatures of mixed zooplankton in a size
fraction edible for the fish were found to vary seasonally,
from more 15N-enriched values in winter and fall to less
15N-enriched values in spring and early summer. Changes
observed were at least partly related to relative contribu-
tion of primary vs secondary zooplankton consumers; ba-
sically, under prevalence of primary consumers lower
levels of nitrogen enrichment were measured, while an in-
crease in contribution of carnivorous taxa to total zoo-
plankton biomass was related to a higher level of
enrichment in nitrogen isotopic signature (Bettinetti and
Manca, 2013). Consequences include not last reliable es-
timates of biomagnification of Persistent Organic Pollu-
tants (POPs; e.g., Poma et al., 2014). 

Molecular ecology

This is concerned with applying molecular phyloge-
netics, and more recently genomics, proteomics and
metabolomics to traditional ecological questions (e.g.,
species diagnosis, assessment of biodiversity, species-area
relationships, organism responses to abiotic and biotic
pressures, and many questions in behavioural ecology).
To characterize the interactions of organisms with their
environment at molecular level, genomics studies genetic
material recovered directly from environmental samples,
proteomic addresses protein localization and functional
cataloguing, and metabolomics assesses organism func-
tion and health through metabolites dynamics. Methods
frequently include using microsatellites to determine gene
flow and hybridization between populations (Colautti et
al., 2005; Vergilino et al., 2011; Marková et al., 2013).
The development of molecular ecology is also closely re-
lated to the use of DNA microarrays, which allows for the
simultaneous analysis of the expression of thousands of
different genes. Quantitative PCR may also be used to an-
alyze gene expression and their relation with specific pi-
coplanktonic taxa or activity as a result of changes in

environmental conditions or different response by differ-
ently adapted individuals.

Molecular ecological techniques have recently been
used to study in situ questions of prokaryotic (bacterial and
archaeal) diversity (Callieri et al., 2009), using CARD
FISH (Catalyzed Reporter Deposition Fluorescence In Situ
Hybridization) techniques with specific fluorescent probes
and subsequent epifluorescence microscopy examination.
The relevance of this approach lies in the fact that many
aquatic microorganisms cannot be easily cultured in the
laboratory, which would allow for their identification and
characterisation with classic microbiological methods. The
ecological importance of the molecular techniques also
stems from the development of PCR (Polymerase Chain
Reaction) and Real Time PCR techniques, which allow for
rapid amplification of genetic material. The amplification
of DNA from environmental samples using general or
group-specific primers leads to a mix of genetic material
that has to be sorted out before sequencing and identifica-
tion. The classic technique to achieve this is through tem-
perature gradient gel electrophoresis or through cloning,
which involves incorporating the amplified DNA fragments
into bacterial plasmids. 

Studies at the Institute in cooperation with the Univer-
sity of Montreal at McGill and the University of Windsor,
Canada (within the Erasmus CREATE Excellence Pro-
gram; http://www1.uwindsor.ca/erasmus-create/projects;
Loria, 2013) are addressed towards investigating mecha-
nisms of evolution of copper tolerance in Daphnia after
toxicity tests simulating levels of exposure to copper
Daphnia species experienced during long-term lake pol-
lution (by using resurrection ecology techniques). Gener-
ation4 microarrays will be applied for detecting
differences in the transcription of genes after copper tox-
icity tests (Colbourne, 2011).

CONCLUSIONS

We hope having opened a window onto past research
at the Institute, with this concise overview of its achieve-
ments to date being at least sufficient to give a rough idea
of its pivotal role in limnology and its ability to help ori-
entate environmental managers. 

However, we should not underestimate the extent to
which research at the institute has contributed to the de-
velopment of ecology. The golden age of the institute has
been unequivocally recorded on paper. During the Second
World War and far beyond, the institute was an incubator,
not only for limnology, but also for the modern natural
sciences and ecology in Italy. Buzzati, Cavalli, Pirocchi,
Tonolli and others promoted a great step forward, towards
an innovative methodological approach: the hypothesis
driven and quantitative natural sciences representing a
clear distinction from the previous, mainly descriptive,
approach. Moreover, the interaction of so many great sci-
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entists was the first example of interdisciplinary science.
During the 50’s and 60’s, the roots of the Italian ecology
were established in Pallanza, thanks to the influence of
ecologists mainly from the U.S. Not least Hutchinson (and
Wetzel, Goldman, Edmondson, Deevey, Margalef, Vol-
lenweider, Peters), who were not only great aquatic ecol-
ogists, but primarily great theoretical ecologists. The
institute was an incubator for ideas which influenced
young Italian scientists such as Antonio Moroni and Nor-
berto Della Croce, who ten years later founded the Italian
Society of Ecology (SItE) and the Italian Association of
Oceanography and Limnology (AIOL), with fundamental
support by Livia Pirocchi Tonolli. In the 1960s, the Insti-
tute greatly contributed to the International Biological
Program (IBP), which was fundamental for the develop-
ment of modern limnology and of theoretical ecology.
Maybe, is not by chance that the top Italian ecologists are
mainly aquatic ecologists. 

Thus, a few questions, to conclude:
“Has the research of the Institute produced new theo-

ries or improved the old ones?” 
“Has the research of the Institute produced theories or

datasets of some diagnostic or predictive value?”
We are confident you can answer yes at least to one

question. If this is the case, the research of the Institute has
not been meaningless and the question why limnology?
(Rigler and Peters, 1995) will once again find an answer.
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