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INTRODUCTION

Over the past decade, the power of personal computing
has allowed numerous, previously computationally inten-
sive statistical routines to become commonplace in ecology
and evolution. his power on our desktops has allowed re-
searchers to increase the spatial and temporal scale of
analyses, increase the depth and rigour of analyses and im-
prove the capacity to better and more formally link theory
and data. All of this is complemented by major advances
in graphics - both the ease of producing them and their ca-
pacity to present multiple forms of information have im-
proved. This is good news. With global environmental
change reaching across oceans and continents into ponds
and streams, and with the current economic and political
climate in many countries demanding research with impact
the ability to visualise, model and analyse data at relevant
spatial and temporal scales in a way that is accessible, reli-
able, repeatable and shareable, is critical.
Freshwater ecosystems are possibly one of the most

under-appreciated ecosystems on the planet. While marine,
agriculture and forested landscapes are tightly linked to a
grown and harversted resource, freshwater systems provide
a somewhat more passive resource - freshwater. Yet lakes,
ponds, rivers and streams are central feature of landscapes
around the world, and they are central features of economies
and ecosystem services. They have offered science, govern-
ment and economics some of the most amazing examples
of how ecosystems operate. They have been central to re-
vealing how agricultural and cultural toxins/runoff alter the
functioning of whole communities (Carpenter et al., 2008).
The sensitivity of organisms in them have been central to
revealing toxicity of numerous compounds in ecological
contexts (Barata et al., 2002; Preston, 2002; Shaw et al.,
2006; Wilding and Maltby, 2006; Asselman et al., 2012).
They have long been vital in assessing the stability and di-

versity of communities to large and small scale perturbations
(Havel and Shurin, 2004 and see 2004 Special Feature in
Limnology and Oceanography). And they have offered in
sticklebacks and daphnia, two of the richest links between
ecology and evolutionary/molecular biology (Hohenlohe et
al., 2010; Colbourne et al., 2011, Mërila, 2014). 
So, what can modern statistical tools do for limnology?

On one hand, one might argue that we’ve done a pretty
good job answering questions and making impact with
what we have. It is a testament to the creativity of re-
searchers in Limnology, and to the malleability of the sys-
tems, that this might be the case. One might also argue that
if we need to resort to new fangled methods to answer our
questions, the questions are not precise enough. If you can
test your hypothesis with a t-test or some other simple test,
some argue, you have missed asking the right question. But
we know this is not true. To really understand whether mod-
ern statistical methods have anything to offer Limnology
(and make this paper a bit longer), we need to be aware of
what kinds of questions we want to be asking in Limnology.
What challenges lie ahead for researchers in limnology that
necessitate new, borrowed or revised statistical methods? 

WHAT DO THE LAST 10 YEARS
TELL US IS IMPORTANT?

In order to try answer this question, I used a rather
popular, qualitative visualisation - wordclouds - of the last
10 years or so of freshwater research. While nice to look
at, there are data underneath - the size of the word repre-
sents its frequency in the collection of text used to gener-
ate the cloud. I downloaded from ISI all articles from
Limnology (2007- present) and from Freshwater Biology
(2003 to present) and generated wordclouds from the ab-
stracts and titles from each journal (Fig. 1). Aside from
pointing out that work from Limnology reflects more on
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162 A.P. Beckerman

sediment and Daphnia spp while work from Freshwater
Biology reflects more on fish, the collection of words is
broad. It includes, as we would expect, community ecol-
ogy, ecotoxicology, issues about scale, space and time,
etc. A focus on communities and assemblages stands out. 
Such a retrospective analysis is never likely to fore-

shadow recently popularised concepts such as meta-com-
munity ecology or molecular ecology. But it also seems
to reveal in the titles and abstracts little overt attention
being paid to climate change, save for the words temper-
ature and responses showing up rather infrequently. I
think it is revealing that very little conceptual/theoretical
detail can be gathered from these clouds - the algorithms
do not detect the word theory very often; nor do they de-
tect in this instance, phrases that might reflect conceptual
advances rising in our field of research. So, from our titles

and abstracts in these two journals, there is little sense of
where limnology and freshwater ecology has really been:
they do not reflect advances in ecological theory, devel-
opments in ecotoxicology, or the onset of molecular tools
or remote sensing. This does not mean that these ideas
have not been influential - just that our titles and abstracts
are not reflecting this (I think that IS interesting). 

ACCESSING DATA

While this analysismay not have been super revealing,
it does highlight a new set of analysis tools available to re-
searchers - tools to access multiple forms of data hiding in
various places. Here, I used Web of Science data, exported
into an XML format, imported into the R programming and
statistical environment (R Core Team, 2013) using an XML

Fig 1.Wordclouds, visually representing the frequency of keywords found in the titles and abstracts of articles in the journal Limnology
and in Freshwater Biology. The data are collected from ISI Web-of-Science, including articles from Limnology (2007- present) and
from Freshwater Biology (2003 to present). The goal was to visualise themes of research permeating the field of freshwater ecology.
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163Statistical tools for limnology

parsing package (Lang, 2013), further filtered by a the tm
text mining package (Feinerer and Hornik, 2013), and then
created the wordclouds with the wordcloud package (Fel-
lows, 2013). This is also possible with GoogleScholar
(https://code.google.com/p/google-scholar-word-cloud-r/).
More generally, access to databases, the building of data-
bases, the sharing of data and the analysis of cross-cutting,
distributed information has long been seen as valuable - just
look at the rise of meta-analyses in the last two decades.
But increasingly mandated data-archiving requirements, as-
sociated databases such as Dryad (http://datadryad.org),
and increasingly refined, freely available tools to access
data (see http://ropensci.org), there is immense opportunity
to further attempt to re-ask longstanding, theory driven
questions we have about the effects of abiotic and biotic
factors on the structure, complexity and diversity of lake
ecosystems. I have no doubt that this will happen as various
document formats become standardised, as organisations
like ThomsonReuters, Google, PLoS and other publishers
release and refine API’s (Application Programming Inter-
face) that allow access to various databases, as program-
ming languages such as R, Python, Perl and Java become
more popular, AND as PhD students emerge with more pro-
gramming and technical skill. 
Groups like ROpenSci (http://ropensci.org) are ensuring

that we will see increasing effort and improved analyses
focused on key questions that use data with historical/tem-
poral or spatial footprints not normally associated with our
research. Development of tools for several open source sta-
tistical and programming languages increasingly reflect the
desire to access this type of information. For example, the
new R-task view on WebTechnologies (http://cran.r-pro-
ject.org/web/views/WebTechnologies.html) synthesizes a
growing set of tools for parsing online data, managing ac-
cess to data on the web and a rapidly increasing set of sub-
ject specific databases. And the Perl and Python
programming languages have long had well established
tools for scaping data from the web. Part of the justification
for meta-analysis, re-analyses or expanded analyses, and
their resulting synthetic interpretation, has always been to
seek generality and thus increase the accessibility of our
science to policy, by allowing us to emphasize repeated and
important pattern. Tools to improve our access to new and
varied sources data that allows such synthesis can only
make our science more relevant to the public, policy mak-
ers, and dare I say, funders.
At this point, I refer readers to Box 1. Box 1 contains

a set of links to resources that will help readers develop a
more in-depth understanding of what tools and techniques
are available for use. It includes websites, books and links
to freely available resources, and there are sections asso-
ciated with each of the discussion points that follow.

REPLICATION AND SCALE

The wordcloud exercise served to introduce numerous
emerging tools for accessing data on the web that will in-

crease opportunities for asking questions at new scales.
But it is not only data from multiple studies that is moti-
vating our assessment of pattern at larger spatial and tem-
poral scales. We are designing experiments and surveys
more and more at these large scales. This requires an
awareness of statistical tools that accommodates new def-
initions of the replicate in our studies. Issues of replication
and pseudo-replication have a long history of discussion
in ecology (Hurlbert, 1984). We have always had ques-
tions about the generality of patterns among lakes and
ponds, or between times. But when questions move to
large spatial scales, for example, our unit of replication is
often the location - and thus we need lots of them to an-
swer questions at this scale - and sampling within the lo-
cations is considered the pseudo-replicate. There are
similar issues with temporal data, quantitative genetic and
phylogenetically structured data where repeatedly meas-
ured or related individuals are not independent. 
These issues are collectively discussed in the context

of non-independence. For questions at large spatial
scales, we need many locations, with samples from
within them. For questions of a temporal nature, we sam-
ple repeatedly the same individuals (or the same loca-
tions within sites over time). Spatial data, repeated
measures of the same individuals or groups or sites, phy-
logenetic data and genetic signals are all sources of vari-
ation that we wish to understand and interpret. For
example, repeated sampling of individuals is a central
feature of estimating growth rates. We often sample nu-
merous siblings within families or within genotypes
(quantitative genetics) in order to estimate formally the
heritability of traits central to understanding the process
of natural selection. Phylogenetic information is re-
quired for questions cutting across different scales of
biodiversity. And spatial information drives our capacity
to generalise across biotic and abiotic changes in habitat.
Whole lake, meso- and microcosm research (lakes,
rivers, nets, bags, buckets and jars) remain mainstays of
aquatic research - both for pure ecology and evolution-
ary ecology. In fact, many researchers turn to aquatic
systems because of the capacity for these communities
to allow replicated, randomised, blocked designs captur-
ing several scales of variability. 
The tools to deal with non-independence in data fall

into the generic category of statistical modeling tools
called random-effects models, hierarchical models or
mixed-effects models (McCullagh and Nelder, 1989;
Gelman and Hill, 2007). The following sub-sections cen-
tre on how to effectively manage spatial and temporal
scale, and also quantitative genetic data with these tools.
Understanding these tools and learning how to use them
is critical in today’s ecology. They are also a dynamic
field of research in statistics, with some major debates
about hypothesis testing. All the major statistical pack-
ages fit these models, but caution should be exercised
(see below).
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164 A.P. Beckerman

Linear Mixed Effects: the workhorse

General linear models are the class of models encom-
passing our standard friends ANOVA, ANCOVA and Re-
gression. With these basicmodels, we make assumptions
about the process generating the data (normal, Gaussian).
Our response variable is some function of independent ex-
planatory variables and their interactions, and after fitting

such a model, we are left with some unexplained varia-
tion, and we assume this variation is normally distributed.
In a mixed effects (random effects or hierarchical model)
framework, we have a tool that allows us to relax the as-
sumption about independence and partition formally the
sources of variation over and above that associated with
our treatments (fixed effects): in spatial, temporal and ge-
netic data, the explanations of variation include variables

Box 1. Online and book resources.

Data access
ROpenSci: http://ropensci.com
RTaskView: http://cran.r-project.org/web/views/WebTechnologies.html

Mixed effects
Bates D, 2006. [R] lmer, p-values and all that. https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html (R-help archived item by Prof. Douglas
Bates, co-author of nlme and lme4 in R, on why p-values are hard in mixed models). 

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS, 2009. Generalized linear mixed models: a practical guide for
ecology and evolution. Trends Ecol. Evol. 24:127-135.

Crawley MJ, 2002. Statistical computing: an introduction to data analysis using S-PLUS. J. Wiley & Sons: 772 pp.
Pinhero JC, Bates DM, 2000. Mixed effects models in S and S-PLUS. Springer: 530 pp.
Zuur A, Leno EN, Walker N, Saveliev AA, Smith GM, 2009. Mixed effects models and extensions in ecology with R. Springer: 574 pp.

Generalised linear models (including survival models)
Faraway J, 2011. Functions and datasets for books by Julian Faraway. http://cran.r-project.org/web/packages/faraway/index.html
Crawley MJ, 2002. Statistical computing: an introduction to data analysis using S-PLUS. J. Wiley & Sons: 772 pp.
Hadfield JD, 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33:1-22.
Harrell FE, 2001. Regression modeling strategies with applications to linear models, logistic regression and survival analysis. Springer: 571 pp.
McCullagh P, Nelder JA, 1989. Generalized linear models, 2. Chapman & Hall: 532 pp.

Bayesian and Bayesian MCMC methods
Gelman A, Carlin JB, Stern HS, Rubin DB, 2003. Bayesian data analysis, 2. Chapman & Hall: 696 pp.
Gelman A, Hill J, 2007. Data analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press: 625 pp.
Hadfield JD, 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33:1-22.
McCarthy MA, 2007. Bayesian methods for ecology. Cambridge University Press: 296 pp.

WinBugs (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml)
JAGS (http://mcmc-jags.sourceforge.net),
MCMCglmm: http://cran.r-project.org/web/packages/MCMCglmm/index.html

Graphics
Sarkar D, 2008. Lattice - multivariate data visualization with R. Springer: 268 pp.
Wickham H, 2009. ggplot2: elegant graphics for data analysis. Springer: 212 pp.

Molecular resources
Bioconductor (http://www.bioconductor.org).

Additional Wiki’s
R-Phylogenetics Wiki - http://www.r-phylo.org/wiki/Main_Page
GLMM for ecologists and evolutionary biologists - http://glmm.wikidot.com

Other software and programming languages
Perl (http://www.perl.org)
Python (http://www.python.org)

Books and Notes worth reading centred on R (Note the Springer Use R! series).
Beckerman AP, Petchey OL, 2012. Getting started with R: an introduction for biologists. Oxford University Press: 160 pp.
Dalgaard P, 2004. Introductory statistics with R. Springer: 267 pp
Faraway JJ, 2002. Practical regression and Anova using R. Chapman & Hall: 213 pp.
Stevens MH, 2009. A primer of ecology with R. Springer: 388 pp.
Venables WN, Ripley BD, 2003. Modern and applied statistics with S. Springer: 497 pp.
Sarkar D, 2008. Lattice - multivariate data visualization with R. Springer: 268 pp.
Wickham H, 2009. ggplot2: elegant graphics for data analysis. Springer: 212 pp.
Hadfield J. Course notes for MCMCglmm. In MCMCglmm: http://cran.r-project.org/web/packages/MCMCglmm/index.html
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165Statistical tools for limnology

(factors or covariates) that ARE independent (like treat-
ments), but also variables, like spatial location or repeated
sampling or families, that introduce non-independence.

Time, space and phylogeny

Repeatedly measured individuals or subsampled sites
require that we formally recognize that each replicate intro-
duces a source of non-independent variation. Traditionally,
perhaps, we considered such effects by the concept of a ran-
dom block. More generally in the terms of regression, we
can consider that each replicate has its own intercept. This
simple idea, when combined with a balanced and orthogonal
design, has a very simple solution statistically where we can
partition and estimate this variance and statistically formu-
late an F-test as a function of the variances and the degrees
of freedom associated with the blocks, the groups defining
our treatments and the random, residual variation.
However, our questions and experimental the designs

are increasingly more complicated. Our questions about
growth rates for example require that we not only repre-
sent each individual as a source of variation, but that we
formally estimate the slope - the rate of growth - for each
individual. Our questions about space often involve mul-
tiple, nested scales of sampling; our multiple watersheds
contain multiple lakes in each of them, from which we
sample multiple times. 
Furthermore, we do not always succeed at a balanced

design or perfectly orthogonal experiment. The tools to
manage these more expansive questions and problems with
design have long had a solution in a tool called Restricted
(Residual) Maximum Likelihood. A computational exten-
sion of Maximum Likelihood methods, which themselves
are, for simplicity, a computational generalization (see
below in discussion of non-normal data) of least squares,
REML allows us to estimate multiple sources of nested and
non-nested variation in our data, and even when our exper-
iments are unbalanced and not completely orthogonal (see
Ovaskainen and Soininen, 2010). 
Spatial variation (spatial autocorrelation) receives ad-

ditional special attention in several statistics packages via
extensions to linear mixed models. These extensions can
specifically help evaluate the pattern of spatial autocorre-
lation in the residuals of your models, and actually fit vari-
ance (random) terms to capture these patterns. The
excellent book Mixed effects models in S and S-Plus (Pin-
hero and Bates, 2000) is well worth a read on this topic
along with more example driven works such as Mixed ef-
fects models and extensions in ecology with R by Zurr et
al. (2009) and Linear Mixed Models: a practical guide
using statistical software by West et al. (2007). Phyloge-
netic relatedness is captured similarly, but often leverages
a class of model called Generalised Least Squares. The
most popular, historical package - CAIC (Purvis and Ram-
baut, 1995) - has been ported and extended in R via the
caper package (http://cran.r-project.org/web/packages/
caper/vignettes/caper.pdf) and is complemented by many

functions in the ‘ape’ package (http://cran.r-project.org/
web/packages/ape/) all of which are tied together in a
lovely wiki (http://www.r-phylo.org/wiki/Main_Page).
Finally, it is worth pointing out that questions about

space and time were defined above in terms of random ef-
fects. However, the explicit analysis of time series and spa-
tial data have very well developed tools; time series
analyses have a rich history in econometrics and are equally
available to ecology (Bjornstad and Grenfell, 2001) and in-
creasingly valuable as longer and longer time series become
available in our lake and pond communities (George and
Harris, 1985; Thackeray et al., 2013). The CRAN - Spatial
task view (http://cran.r-project.org/web/views/Spatial.html)
offers insight into the types of tools that are available and
being developed, including interfaces with databases (in-
cluding Landsat and Google Maps) and mapping pro-
grammes (ESRI/GRASS).
Again, I draw reader attention to Box 1 and Box 2. As

noted above, Box 1 summarises a set of resources avail-
able to readers to gain more insight into methods. Box 2
highlights the value of the Task Views section on the
Comprehensive R Archive Network. Whether you use R
or not, this resource is invaluable as it contains explana-
tions of several methods and via R, reproducible examples
that work on most computing platform.

ARE WE NORMAL?
GENERALISED LINEAR MODELS

The tools discussed above centre on non-independence.
However, the second major set of assumptions in a typical
general linear model (ANOVA, ANCOVA, Regression)
centre on normality of the residuals. In ecology and evolu-
tion, there are several types of data where we a priori do
not expect the residuals to be normal. Binomial or logisitic
data, such as presence absence data in conservation, per-
centages of any sort, and sex-ratio data can now be treated
explicitly via generalized linear models; there is no need
for transformations. Additionally, count data, a core data
type for conservation biology (e.g., species richness), is typ-
ically modelled using the poisson distribution. The major
advances in dealing with binomial, poisson or any other
data derived from other non-normal processes centre on the
ease with which we can now fit these generalized linear
models. These models allow estimation of effects associ-
ated with treatments where poisson, binomial and other
non-normal data can be analysed with precision and ease -
and without the frustration and risks associated with trans-
formations (O’Hara and Kotze, 2010). 
These data types present several problems - they are

typically bounded in one way or another (i.e., counts are
never less than 0; proportions are between 0 and 1) and
the data have interesting mean-variance relationships.
These models deal with these issues elegantly, offering
precise and accurate inference and insight, over and above
transformation methods (O’Hara and Kotze, 2010). For
example, there are several new tools for dealing with
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166 A.P. Beckerman

count data when there are more 0’s than expected - the so
called zero-inflated poisson. And parallel developments
allow models to be fit to species richness data that simul-
taneously allow estimating the presence-absence process
(binomial) and the species richness process (poisson).
These are known as hurdle models. The pscl package in
R (Jackman, 2011) has an excellent vignette and introduc-
tion to these tools. All statistical packages worth their pro-
grammers offer the possibility to fit generalised linear
models, select the underlying distribution and make in-
ferences. Again, Box 1 presents several resources for
learning about and working with non-normal data.

Survival models 

I think it is worth highlighting a class of model that is
not used extensively throughout ecology, and perhaps even
less so in aquatic ecology; that said, their importance in
ecotoxicology cannot be understated, so there is a portion
of our community very familiar with them. The models are
commonly known as survival models, but are essentially
models of the timing of events. They are variations on the
generalised linear model, because the timing of events typ-
ically does not generate a normally distributed set of resid-
uals/errors. There are parametric and non-parametric
versions of these, and their importance to medical/epidemi-
ological work means that they are constantly advancing.
The key features of these models is that the response vari-
able is a combination of information on the time an event
occurs and the nature of that event. The latter could be, did
it actually happen, or not, during my observation period.
The value in this statement is that the distribution of event
times is made up of known events, and information leading
up to, for example, the last time we see an individual but
before an event occurs. This abstract description of events
can be infuriating, but it is key to think broadly. Event times
can include the obvious - death and birth - but also might
include hydrogeomorphic events (time to drying), breeding
events, or foraging events. 

The point here is that questions linked to when some-
thing occurs are the remit of these models. Frank Harrell’s
(2001) book Regression modeling strategies with appli-
cations to linear models, logistic regression and survival
analysis is a great resource.

The generalised linear mixed model 

The previous two sections introduced methods for
dealing with either the non-independence in ones data, or
with data arising from processes that generate non-normal
error/residuals. Of course, there are methods to fit models
that accommodate both situations: the GLMM - gener-
alised linear mixed models. They are however very chal-
lenging. And while parametric methods are abundant,
remember that there are debate about hypothesis testing
linked to linear mixed models with normally distributed
errors. One can imagine then that GLMM’s are definitely
worth being careful of. However, SAS, R, and
Genstat/ASREML and Stata are the go-to programmes for
fitting these models. Bolker et al. (2009) TREE review of
GLMM’s is a great starting point philosophically, but is
now out of date with respect to package capabilities. The
capacity to fit these models and make inference is improv-
ing with access to Bayesian methods for estimating
GLMM’s (see below) as highlighted by the work of
Ovaskainen and Soininen (2010) in diatom presence - ab-
sence data in seven watersheds.

Multivariate data

Questions about multiple species, multiple traits or
functional diversity remain significant features of research
in lakes and ponds. Our research in these areas has long
benefited from continually advancing methods of ordina-
tion (e.g., PCA, factor analysis, NMDS). Multivariate
methods have been refined dramatically over the past
decade, allowing the sophistication and complexity of our
questions about biodiversity and for example, multiple
traits in a life history, to mature. 

Box 2. Task views from the Comprehensive R Archive Network.

Whether you use (or believe in using) R or not, the Comprehensive R Archive Network (CRAN) hosts an amazing resource tied to the >4500
packages available for use in data analysis and programming: Task Views (http://cran.r-project.org/web/views/). Task Views are curated selections
of statistical and programming packages focused on questions and methods central to specific topics. For example, the Time Series Task View
(http://cran.r-project.org/web/views/TimeSeries.html) is divided into Basics, Times and Dates and Classes - tools for handling this type of data
- and then Forecasting, Frequency analysis, Decomposition and Filtering and Seasonality … etc. If you have done your background reading, and
know a bit about why you want to use time series analyses, this resource, with packages, linked help files in pdf format, and example vignettes
full of reproducible examples, is an online repository for learning about and taking advantage of some of the most advanced methods available. 

Relevant to our ecological and evolutionary questions in aquatic systems, there are Task Views on Bayesian methods, Clustering, Differential
Equations, Environmetrics (multivariate), Experimental Design, Genetics, Graphics, MetaAnalysis, Multivariate, Optimization, Spatial, Spa-
tioTemporal, Survival and Times Series, Phylogenetics, Especially Comparative Methods and a very recent addition, Web Technologies and
Services, for accessing databases and data services.

http://cran.r-project.org/web/views/
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There are two very fruitful avenues of research relevant
to freshwater ecology. First, for Multivariate Linear Models
(i.e., MANOVA, but no mixed/random effects), there are
several new tools being developed, largely in the vegetation
modelling/diversity/conservation world that might offer
limnology and aquatic ecology a very useful framework for
conservation centred research. These methods draw on the
rich history and range of tools for multivariate data ordina-
tion (PCA, CCA, MDS, etc.) and the increasing desire to
embed this in a more formal hypothesis testing framework.
One example is MVAbund (Multivariate Abundance; Wang
et al., 2012), an R package designed specifically for hy-
pothesis testing with multivariate count data (site x species
matrices) in an experimental framework. You can think of
this as extending decades of developments centred on or-
dination methods designed to assess the correlation be-
tween ordination axes and environmental variables, such
as found in the vegan package (Oksanen et al., 2013), and
specifically the ordisurf() and envfit() functions. These
were developed to estimate linear relationships between
some factor and the distance matrix defining the ordination.
MVAbund brings a multiple regression, multivariate, hy-
pothesis testing framework to these problems (Wang et al.,
2012). As with all R packages, this one comes with great
examples, vignettes and an associated published paper
(Wang et al., 2012), not to mention an hilarious video
(www.youtube.com/watch?v=KnPkH6d89l4).
The second tool, a different philosophy as well, centres

on Bayesian MCMC methods. Bayesian methods offer an
alternative hypothesis testing framework (Gelman et al.,
2003; Gelman and Hill, 2007), and significantly, one for
experimental situations where estimating variances (genet-
ics, temporal variation spatial variation, etc.) are important
(Ovaskainen and Soininen, 2010). Reflecting on previous
sections, Bayesian MCMC methods are well suited to (gen-
eralized) (multivariate) mixed effects models. These meth-
ods are benefitting from our substantial desktop computing
power, providing an alternative to p-value based inference,
and facilitating the fitting of an extremely wide array of
model types. If you find yourself having designed an ex-
periment requiring hypothesis testing in a multivariate
mixed model framework, you will probably want to learn
how to use WinBugs (http://www.mrc-bsu.cam.ac.uk/bugs/
winbugs/contents.shtml), JAGS (http://mcmc-jags.source-
forge.net), and the MCMCglmm package in R (Hadfield,
2010), which is highly orientated to biological questions.
Mark Kéry’s book on WinBUGS (Kéry, 2010), Michael
McCarthy’s (2007) Bayesian Methods for Ecology and Jar-
rod Hadfield’s Course notes associated with the MCM-
Cglmm package in R are valuable assets.

Molecular data

Molecular biology is increasingly influential in ecol-
ogy. We increasingly rely on molecular biology tools for
species identification purposes, and our capacity to ask
and re-ask questions about local adaptation with high res-

olution genomic (and other omic data) is growing. We are
increasingly able to design experiments that with these
types of data truly develop mechanistic understandings of
how adaptation occurs, not to mention contributing to re-
search focused on key question in evolutionary biology
such as the stability of the genetic covariance matrix,
genome evolution and rates of evolution (Hohenlohe et
al., 2010; Mërila, 2014). This forum us too short to detail
sufficiently what is on offer, but tools for managing, vi-
sualizing and analysing bioinformatics data is well served
by the open source extension of R known as Bioconductor
(http://www.bioconductor.org). This world of genomic
data analysis is really served now by a body of program-
ming savvy individuals leveraging a combination of pro-
gramming languages ranging from Perl, Java and Python
for data manipulation and parsing, to R for visualisation
and analysis. These types of data sources typically lever-
age workflows that tie together the set-up and manage-
ment of SQL like databases, Python/Java/Perl
programmes that parse and often analyse data leading to
more analysis and visualisation in R. Analysis and infer-
ence with molecular data is often associated with some of
the same issues we introduced above; both pseudo-repli-
cation and response variables that are bounded in one way
or another are features of molecular data. Bayesian meth-
ods, permutation methods, hierarchical models (mixed ef-
fects models) and various forms of correction for multiple
testing (e.g, Bonferroni and False Discovery Rates) are
central features of these developing methods.

Putting methods in context

Climate change, fisheries, species invasions, biodiver-
sity and functional diversity drives a huge portion of re-
search in aquatic communities. These questions require data
at large scales, are multivariate and require these tools
linked to space and time. The issues and tools discussed
above - data management and statistical - are important in
these applied realms. Research programmes in climate,
fisheries and biodiversity are comprised of several types of
data gathering, interpretation and analysis. They are com-
prised of i) a naturalist side - collecting, collating and sythe-
sizing data on pattern; ii) a descriptive/hypothesis
generating side - often using macroecological or multivari-
ate/ordination tools to reduce the dimension of a high di-
mension dataset to further synthesize and visualise patterns
(e.g., spatially resolved climate or biodiversity data); and
ii) a modelling side, where mathematical/statistical models
are developed to both explain and predict the future. All
three are vital, and together make clear that: a) the manage-
ment and storage of data for access by others is vital; b)
that statistical methods for describing and visualising high
dimension data (multivariate) at large scales are incredibly
valuable and typically drive hypothesis generation; c) that
generating mathematical models provides testable theory
(differential equations, partial differential equations); and
d) fitting these models (e.g., state space modelling) to the
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data at appropriate temporal and spatial scales completes a
rather large circle.
Critically, as we enter an even more computer and data

rich world, where the question by the next generation of
scientists will be not whether, but how, to get access to
data, the buzzword on the horizon is reproducible re-
search. This is a catch-all term for a rather simple idea -
data, analyses and results from publicly funded work
should be reproducible. This requires that the data, code
and results be accessible and available. I would assume
that most readers understand what open source software
means, and are at least familiar with Open Access pub-
lishing. It is certainly worth encouraging young and sea-
soned researchers in aquatic ecology to engage in the
debate and where possible make tools, methods, data and
results accessible and available. And the importance of
this in the realm of climate change, access to freshwater
and fisheries can not be understated.

On asking questions and making figures
The previous sections have focused on a few key ad-

vances that continue to mature the field of statistical
analysis relevant to the scale of data we can collect in
freshwater ecology. To finish, I want to highlight some-
thing that I and colleagues always teach: ask good ques-
tions, rely on theory to generate expectations in your data,
replicate and randomise appropriately and then, once you
have your data, make a picture before your analysis. With
a good, formal figure and visualisation of your data, the
analysis will follow. Always ensure that you understand
the distinction between describing pattern (i.e., generating
a hypothesis) and analysing pattern (e.g., testing a hypoth-
esis). There is no harm in emphasizing just how critical it
is to make a figure in advance of your analysis. If you
have a clear idea what you were expecting - i.e., how the-
ory predicts the relationship between your data should
look - make that figure BEFORE you embark on the

Fig 2. Examples of visualisation of data and models. A) a hexbin plot, revealing a 2-dimension spatial distribution of count data, from
two different seasons, where the topology of abundance at sites is defined by the colour-scheme. B) The results of a hypothetical survival
analysis comparing control and sub-lethal exposure to cadmium, demonstrating visualisation of confidence intervals and predicted per-
centiles on the survival curves. C and D) lattice (C) or facet (D) plots from the lattice and ggplot2 packages in R, revealing capacity for
visualising multi-dimensional data, statistical fits and confidence bands in a compact and effective manner.
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analysis. Visualization methods in a few modern statistical
packages such as R, SPLUS, and Genstat have improved
dramatically. One such improvement centres on lattice
style graphics which allow structured, multivariate data
to presented in very innovative and accessible forms, al-
lowing researchers to see complex patterns in their data.
here is an outstanding introduction to lattice graphics the
lattice book (http://lmdvr.r-forge.r-project.org/figures/fig-
ures.html) by the lattice developer for R, Deepayan Sarkar
(2008). The graphics language of ggplot2 (Wickham,
2009) is a rapidly emerging and very popular tool
(http://ggplot2.org). Similar developments have followed
in Genstat, SAS and STATA, as well as MATLAB, Python
and other more formal mathematical and programming
languages. It is worth remarking on how the Python com-
munity is developing as well as an integrated environment
for data acquisition, manipulation, analysis and presenta-
tion (http://www.python.org and http://www.scipy.org ). 
My fundamental recommendation centres on making

figures: the knowledge you gain of your data by making
a figure that matches the theory/experiment/sampling pro-
gramme you invested in pays major dividends. As the
scale of our questions increases (either by looking at
more, or looking in more detail), the need to visualise in
advance and as a result of analyses can not be overlooked.
When teaching bio-statistics, or working with PhD or
masters students, we always require that they produce a
figure before embarking on analyses (or consulting with
us). Take some time to learn more visualisation tools and
techniques. I would suggest using R, because the graphics
are amazing quality and the process of having to ask (by
writing down) for exactly what you want is one of the best
exercises for getting to be familiar with your data. And if
you’ve got a good idea of what you were expecting/hop-
ing to see, this picture should set you on your way for a
very straightforward analysis. 
Fig. 2 a-d offer some insight into the open-source, visu-

alisation tools available viaR. In Fig. 2a I have created some
spatially resolved presence - absence data on a phytoplank-
ton bloom in an early and late season. Built in tools within
the lattice (Sarkar, 2008) and hexbin package in R (Carr et
al., 2013) bin the counts (presences) at fine scales and pres-
ent the data has hexagonal shapes that together generate a
spatial representation of the density of the phytoplankton.
This is a form of bivariate histogram useful for visualizing
the structure in datasets with large n (Carr et al., 2013). A
similar resource is provided in the ggplot2 linbary (Wick-
ham, 2009). Fig. 2b presents some simulated data on sur-
vival of a zooplankter in facing control and Cadmium
treatments. Here, having fit a parametric survival model, a
special form of the generalized linear model, built in tools
within the rms package by Frank Harrell (2013) allow us to
visualize clearly the fitted estimates of survival probability
over time, with elegant, transparent 95% confidence inter-
vals. I have also shown the median, 75th and 26th percentiles,
easily calculated from the model and transferred to the fig-

ure. Fig. 2 c,d present lattice (Sarkar, 2008) and ggplot2
(Wickham, 2009) representations of the same data. In each
case we are looking at simulated data on Population Growth
Rate of several replicates of a zooplankter spread across a
range of initial sizes (mass) of the starting propagules. Fur-
thermore, the data were collected under three different con-
ditions (Resource Levels=4,6,8). In each figure, we have the
resource level specific data and linear regression of PGR
versus starting mass, split by the treatments. There is a back-
ground grid provided in each, and in the ggplot2 implemen-
tation, confidence bands in transparent grey are also
provided automatically around the panel specific linear re-
gressions. The very simple message to drive home is that it
is very possible to visualize complex data in a very effective
manner that reflects the nature of a priori questions. Lattice
style graphics, colour gradients, and transparent colours are
all standard now in the advanced graphics modules in most
statistical packages. Learning the syntax/language of the
graphical tools pays major dividends for explaining your re-
sults. Programming is thus becoming increasingly impor-
tant. For the novice, I do believe that R is an obvious choice
for learning the basics of programming while re-enforcing
the tenets of statistics and visualization (Beckerman and
Petchey, 2012). Python, Perl and Java remain major forces
in data management and in work with bioinformatics data.
An important point, in light of the issues of public fund-
ing=public access, is to consider open source, reproducible
research, and when possible open access. With R, Python
and Perl, along with various open source database links, and
associated outstanding statistical and programming commu-
nities offering loads of support, we have never been in a bet-
ter situation to access tools for analysis and visualization of
complex data.

CONCLUSIONS

Statistics and visualisation tools are always going to
improve and or change. While it is easy to get caught up
in statistical and analytic methods (there is a whole journal
for that: Methods in Ecology and Evolution), the main ad-
vances in our science will still come from remembering
to ask good questions, to rely on and develop theory to
generate expectations, and to make good, informative fig-
ures that reflect you are a priori understanding. The analy-
sis you need to perform will be crystal clear if you have a
good visualization of your data.
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