
INTRODUCTION

One of the historical hypotheses is that fish abundance
in fluvial ecosystems is mostly dependent on ambient
water (and thus indirectly on air) temperature and water
discharge (Fry, 1971; Horwitz, 1978). In temperate zones,
it has been suggested that seasonal climatic changes affect
wild fish populations both quantitatively and qualitatively
(Harvey, 1987; Matthews, 1998; Jackson et al., 2001). Re-
search on responses of individual species to water tem-
perature identified the dependence of population
abundance on water temperature was undertaken also (Le
Cren, 1958; Craig and Kipling, 1983; Shuter et al., 1989).
However, many riverine species of a temperate zone are
resistant and adapted to unstable climatic conditions (par-
ticularly, in a short period of time), which do not cause
high mortality such as that caused by toxic substances re-
leased into rivers, for example (Allan, 1995; Matthews,
1998; Kruk and Penczak, 2013).

Investigation of the effect of river channelization on fish
populations also has a long history and delivered a lot of
convincing evidence that a reconstruction of the river bed
(which changes the natural discharge) can have a negative
impact on the qualitative and a quantitative composition of
the fish fauna (Smith, 1963; Harper and Ferguson, 1995
(see Frontispiece in the book); Penczak et al., 1998) and
their food base (Smith et al., 1984; Gore, 1985; Gore et al.,
2008). Hodgson and O’Hara (1994) who examined the ef-
fect of channelization on fish populations in the Welsh Dee
River stated that in the shallow that appeared after the reg-

ulation river salmon movement was made difficult, which
affected anglers’ catches. However after the conducted
channelization they did not observe deleterious changes in
the coarse fish populations’ abundances. It is not easy to
identify an impact of climate on the abundances (or bio-
masses) of species because they are simultaneously im-
pacted by biotic factors also (Shuter and Meisner, 1992;
Mann, 1994; Grossman et al., 1990; Jackson et al., 2001;
Głowacki and Penczak, 2013; Nielsen et al., 2013). Many
studies indicate that biological factors exclusively can also
drive significant fluctuations in fish species density in a
stream (Mills, 1982; Henderson, 1985; Wootton, 1985;
Copp et al., 1991; Persson and Johansson, 1992; Mann,
1994; Penczak, 1994, Jackson et al., 2001; Nielsen et al.,
2013). Fluctuations in fish species abundance have been
frequently recorded not only in the total fish of a stream but
in the abundance of an individual species’ year-classes
(Matthews, 1998; Głowacki and Penczak, 2012), when re-
production and then recruitment (0+) were affected by
many biotic and abiotic factors (Wootton, 1985; Mann,
1994; Jackson et al., 2001; Penczak, 2001). Some study in-
dicate that the frequent mass mortality of juveniles, can re-
sult from low temperature and starvation, may be caused
by unfavourable temperatures, and when the food required
by the fish (some developmental stages of macroinverte-
brates) does not appear at the appropriate time (Shuter et
al., 1989; MacLean et al., 1981; Mills, 1982; Henderson,
1985; Mills and Mann, 1985; Johnson and Evans, 1991;
Persson and Johansson, 1992; Jackson et al., 2001; Gross-
man, 2013). Juvenile fish respond with immediate and mass
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mortality to the above mentioned factors. This is because
0+ fish have ‘narrow and specific requirements’ (Wootton,
1985), and the absence of conditions that satisfy these re-
quirements can significantly reduce or even stop the recruit-
ment of a species’ cohort in a given year (Schiemer et al.,
1991; Penczak, 1994). Consequently, 0+ fish can provide
a direct indication of environmental conditions (Copp et
al., 1991), which is compatible with the observation that in
many species new strong cohorts enter a population only
from time to time, and rarely every year (Penczak, 1994;
Mann, 1994).

The aim of the study was to show how stable are den-
sity and biomass of fish in a small stream derived by cli-
mate change and the stream channelization. An additional
aim was to determine if there were any individual species
responding either positively or negatively (unambigu-
ously) to the two factors abovementioned.

METHODS

Study area

Fish samples were collected in the Dobrzynka Stream
(21 km long), tributary of the Ner River in the Warta River
system (Poland), in the first half of October of each year.
The study was conducted in the middle reaches of the
stream, over 2.5 km upstream from the 70 thousand inhab-
itant industrial city Pabianice (Fig. 1), where the right bank

of the stream adjoined forest, and the left edge a 0.5-1 km
belt of meadows and pastures, not very intensively used.

The stream was flowing in a natural riverbed at the
beginning of the present investigations (1979-1988), but
has been channelized since the spring of 1989. However,
the channelization work was carried out so fast that in
October 1989, when our fish sample of that year was
collected, no sign of the channelization works was al-
ready visible. The channelization consisted in the mod-
ification of meanders, either by their removal or by
decreasing their angles, in the construction of several ce-
ment weirs, in the clearance of all vegetation, including
trees, shrubs, submerged and emerged plants, and in the
construction of fascine fences (wicker wall built of osier
branches) along each bank of the study area section, and
elsewhere in that course of the river. The channel width
and depth were uniform, and the stream resembled a
ditch (1.7 m in width).

The positions of the five sampling sites (A-E) are
marked on Fig. 1. The sites were designated as a 450 m
stretch that did not differ morphologically from adjacent
parts of the stream, and were considered to be represen-
tative of the middle reaches of the Dobrzynka Stream.
However, the 450 m stretch was not representative for the
whole length of the 21 km long stream when the study
began (1979). The stream’s downstream course was a 6
km stretch that was fishless, because it served as the col-
lector of chemical, textile and domestic wastewater that
was drained the whole of the Pabianice town. The stream
section from the sources to set out sites was about 11 km
long and for the first 5 km stream flowed and still flows
through the forest. The mean water discharge on the sam-
pling days (in October of 1979-2001) was 0.15 m3 s–1

(0.10-0.26 m3 s–1); mean water discharge also did not
change significantly after the stream channelization.

Air temperature and precipitation, which were meas-
ured daily by a governmental unit located close to the
mouth of the Dobrzynka Stream. For these two variables,
monthly average values were calculated, and from them
the yearly averages, averages for the winter months (Nov-
Apr), and for the summer months (May-Oct). The deci-
sion to use these data for the estimation of climate
changes follows Crisp (1992), who found high correla-
tions between mean water temperature and mean air tem-
perature in small temperate zone streams, and a high
correlation between precipitation and discharge. Accord-
ingly, his study allows the prediction of stream water tem-
peratures from air temperatures, which was confirmed by
Mann (1976). Since the Dobrzynka Stream flows across
a flat valley, rain does not cause any significant increase
in discharge over a short period of time. In such condi-
tions, air temperature and precipitation are adequate for
estimating the effect of discharge and water temperature
on fish populations (Mann, 1976).

Fig. 1. Map of the Dobrzynka Stream (Poland), and sampling
sites (A-E) location. Site A is located downstream, site C is only
50 m long, remaining ones are 100 m each.
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Sampling

In the course of electrofishing, two people waded six
times upstream with anode dipnets along each site. Sites
A, B, D, and E were 100 m long, site C was 50 m long
(Fig. 1). Caught fish from each sample, after the identifi-
cation of the species were counted, weighed and released
back into the river at the end of given site. Site area of
sites A, B, D and E till 1988 was over 200 m2 each, and
after channelization about 170 m2 each; that of site C was
85 m2 (Penczak and Głowacki, 2008). For this study, fish
were sampled at the first ten day period of October, each
year from 1979 to 2001, because this month freshwater
fish in middle Europe achieve their maximum length,
body weight, body caloricity, etc. (Wootton, 1985). Full-
wave rectified current was supplied from a 3kW generator
with an output of 220-230 V and 1.5 -3.0 A at the dipnets.

Data analysis

The depletion method of abundance estimation was
used to estimate the density, the standing crop (sensu
Ricker, 1968), catchability and other parameters (Zippin,
1956). Application of the Zippin model is exemplified in
a paper devoted to fish catchability in the Dobrzynka
Stream (Penczak and Głowacki, 2008). The density and
standing crop for all populations and some selected
species were recalculated per 100 m2 using means from
the four sampled sites, which were 100 m long, and the
central site (C), which was 50 m long.

The randomization test was used to assess a null hypoth-
esis of no difference in population parameters (mean density
and biomass) between the natural and regulated stream
(Efron and Tibshirani, 1993). The Spearman rank correla-
tion analysis was applied to search for relations between pre-
cipitation and temperature versus density, and versus
biomass (Zar, 2010). The correlation analysis was also car-
ried out using abundance and density data that lagged one
year behind the precipitation and temperature data, to quan-
tify temporal variation in the patterns of the populations
(Collins et al., 2000; Kampichler and van der Jeugd, 2013).

RESULTS

Density increased between 1988 and 1990, and remained
high for two subsequent years. In 1993, it decreased to the
level recorded before channelization (Fig. 2). Similarly bio-
mass increased between 1989 and 1991 but in 1993 it was
at the level observed before the channelization. The stream
channelization did not seem to be responsible for the fluctu-
ations in density and biomass in the post-channelization pe-
riod, and differences between investigated fish population
parameters of both periods were not significant (Tab. 1).

Air temperatures for the whole year, for the summer sea-
son (May-Oct), for the winter season (Nov-Apr), and for one
year time lag, did not exert any impact on the density and

biomass (Tab. 2). Precipitation for the whole year, and for
May-Oct period were barely significantly correlated with
biomass only. The three years of the highest precipitation and
mean air temperature did not coincide with the peaks of den-
sity and standing crop (Fig. 2). Data for individual species
are shown in Fig. 3. There were no species for which the data
suggested that density was affected by the Dobrzynka Stream
channelization. Zero densities were recorded in both the un-
modified and the regulated forms of the stream for: crucian
carp [Carassius carassius (L.)], Ukrainian lamprey [Eudon-
tomyzon mariae (Berg)], and bitterling [Rhodeus sericeus
(Pallas)]. Densities were ≤5 individuals per 100 m2 for perch
(Perca fluviatilis L.), roach [Rutilus rutilus (L.)], crucian
carp, and Ukrainian lamprey. Gibel carp [Carassius gibelio
(Bloch)] was absent between 1979 and 1987 (i.e., in the nat-
ural stream), but present in 1988, when the stream still had a
natural corridor, at densities of ≤5 individuals per 100 m2.
The species was abundant in the first years after the chan-
nelization, yet in the two following years they became rare
again. A similar situation occurred for crucian carp, had its
highest population densities in the natural stream. Similar
patterns were observed for Ukrainian lamprey, bitterling,
sunbleak [Leucaspius delineates (Heckel)], and ten-spined
stickleback [Pungitius pungitius (L.)], whose highest densi-
ties occurred in the natural corridor. For all these species,
zero and the lowest densities were also recorded in both the
natural and engineered habitats (Fig. 3). Perch, roach, gud-
geon [Gobio gobio (L.)], stone loach (Barbatula barbatula)
and stickleback (Gasterosteus aculeatus L.) reached their
highest densities one year after the channelization, yet after
1993 their abundance returned to a medium, or more fre-
quently to a lower level, than in the natural stream.

Gudgeon (bentic, psammophilous species) was the
most abundant species and was collected in all years of
the study (occurrence stability: 100%), while less abun-
dant but always present were the stone loach, three-spined
stickleback and ten-spined stickleback, which in 1979-

Tab. 1. Randomization test comparing the mean values of the
density and standing crop of all populations of fish species in
the pre- and post-regulation periods.

Parameters Ne 100 m2 Be 100 m2

N. of replications 10,000 10,000
Total of sample A 3274.3 17791.9
Total of sample B 3260.3 25935.8
Mean of sample A 327.4 1779.2
Mean of sample B 250.8 1995.1
Difference between means (A-B) 76.7 -215.9
Null hypothesis: A=B (two-tailed test)
P value 0.3378 0.5871
Ne, density; Be, standing crop; A, pre-regulation period; B, post-regu-
lation period.
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Fig. 2. Variability and fluctuations of the density and standing crop (SC) for all of the species together during the sampling time
(mean±standard error) in the Dobrzynka Stream (Poland). The density and SC were calculated per 100 m2 from five, adjoining, sampled
sites. The arrow indicates the year in which stream channelization began.

Tab. 2. Spearman correlations analysis between precipitation or temperature, versus density and standing crop. Climate parameters
were calculated from monthly means.

Precipitation Valid Spearman t(N-2) P

Whole year and Ne 23 -0.3711 -1.8315 0.0812
Whole year and Be* 23 -0.4972 -2.6257 0.0157
May-Oct and Ne 23 -0.3656 -1.8001 0.0862
May-Oct and Be ** 23 -0.5702 -3.1804 0.0045
Nov-Apr and Ne 23 -0.2783 -1.3278 0.1985
Nov-Apr and Be 23 -0.1379 -0.6381 0.5303
Nov-Apr, one year lag and Ne 22 0.0938 0.4213 0.6780
Nov-Apr, one year lag and Be 22 0.1249 0.5628 0.5798

Air temperature

Whole year and Ne 23 -0.0401 -0.1838 0.8559
Whole year and Be 23 0.1633 0.7584 0.4566
May-Oct and Ne 23 -0.1809 -0.8429 0.4087
May-Oct and Be 23 0.0397 0.1818 0.8574
Nov-Apr and Ne 23 0.0618 0.2838 0.7793
Nov-Apr and Be 23 0.3027 1.4553 0.1604
Nov-Apr, one year lag and Ne 22 0.2323 1.0680 0.2982
Nov-Apr, one year lag and Be 22 0.2611 1.2096 0.2405
Ne, density; Be, standing crop. Significance level: *≤0.05, **≤0.01.
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1980 was the predominating species in the Dobrzynka
Stream, although afterwards it became rare (Fig. 3), with
two exceptions in 1985 and 1995. Species such as perch
and roach were both absent once, in 1979. There were
species that were rarely sampled in the natural corridor
(gibel, carp), or the channelized one (Ukrainian lamprey,
bitterling, and sunbleak). However, no species either ap-
peared or became extinct precisely in 1989 spring, when
canalization was performed (Fig. 3). Some species were
even more abundant in 1989, but none reached a density
that had not been recorded in the natural stream already.

DISCUSSION

In the present study, one density peak was observed at
the beginning (Fig. 2), and a next one eight years later
(1990-92). The second density peak was not induced by
the stream channelization, but arose after the change, one
year later than a peak in standing crop. The peak of den-
sity (in 1979-80) indicates that rich 0+ cohorts were en-
tering the fish populations because of the low total
standing crop values (with numerous new 0+ cohorts of
low mean body weight). Large fluctuations (up to 10-fold)

in fish numbers in the Sagehen Creek (California, USA)
were recorded by Gard and Flittner (1974) during a nine
year study only. A dataset spanning 40 years (1969-2008)
obtained in southern Oklahoma streams by Matthews et
al. (2013), shows that most species were persistent, qual-
itatively, across the whole period, but varied widely in
abundance. Presumably future studies will be able to an-
swer whether population explosions can take place every
few years and have a cyclical or stochastic character
(Grossman et al., 1990). The high variability recorded in
stream fish assemblages suggests that it may be hardly
possible to detect the impact of anthropogenic using pop-
ulation data only (Grossman et al., 1990).

The inability to demonstrate the negative impact of
channelization of the Dobrzynka Stream on the fish pop-
ulations could be caused by the fact that the planks that
were inserted in the weirs’ slots for damming water were
soon stolen and the devices never worked as intended. Be-
sides, three-four years after the river banks were strength-
ened with fascine to protect them against erosion in 1989,
running water (in a few places), had much destroyed the
wicker walls and had dug cavities around the poles stuck
into the bottom that served as the walls’ support, thus hav-

Fig. 3. Fluctuations of the density per 100 m2 of common species in the Dobrzynka Stream (Poland). White circles indicate absence of
fish, while grey ones indicate presence of less than 5 individuals.
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ing formed shelters for fish there (Penczak and Mann,
1993). Despite of the above data some effects of channel-
ization conducted in the middle course of the Dobrzynka
Stream were expected because several low cement weirs
were constructed there, and the clearance of all submerged
and emerged vegetation was performed (Penczak and
Głowacki, 2008). This resistance fish populations against
extinction can be continues even when rivers become reg-
ulated (Shuter and Meisner, 1992; Jackson et al., 2001;
Parasiewicz, 2008), for example when naturally vegetated
banks are replaced by concrete slabs (Wootton, 1990;
Matthews, 1998; Jackson et al., 2001).

Reactions of individual species to the stream channel-
ization were different and not simultaneously dependent
on the channelization. The reactions were difficult to ex-
plain by climatic changes. Some studies of a single
species have suggested that abundance/density peaks are
not clearly related to climate and visible during one-two
decades interval (Rose, 2000; Penczak, 2011; Matthews
et al., 2013). Biomass and density for the whole year,
summer, winter, and one year lagged whole year, were not
significantly correlated with temperature (Tab. 2). Precip-
itation with the whole year biomass and the summer
months biomass were correlated on barely significant lev-
els (Zar, 2010). Probably the larger precipitation, resulting
in a faster water flow, rinsed part of the fish down the
stream, and this produced a negative correlation. Yet these
analyses do not indicate that co-occurrence patterns be-
tween the species were present, with the resulting possi-
bility of biotic interactions (predation and competition)
being responsible for strong fluctuations in density
(Grossman et al., 1990; Céréghino et al., 2005) .

It is still difficult to determine the time required to as-
sess the environmental variables that could change a
species’ abundance (Głowacki and Penczak, 2012). The
effects of a particular disturbance on a species may require
a long period of time to become detectable (Power et al.,
1996; Matthews, 1998; Głowacki and Penczak, 2013).
The present study could not explain peaks and troughs in
fish density and standing crop. The most abundant
species, such as stony loach, stickleback, perch, and gud-
geon, were present each year, but fluctuated in number
from year to year, as in other Polish rivers (Penczak et al.,
1998, 2007). All species combined, as well as individual
species, did not respond to such stressors as the stream
channelization and climate changes at any significant
level in the Dobrzynka Stream. This may be partly ex-
plained by the fact that dominant and subdominant species
in the Dobrzynka Stream have calculated median dis-
placement (MD) close or smaller than the home section
lengths (HSL: 100 m, sensu Gerking, 1959), with excep-
tion of gibel on one sampling occasion. These results were
congruent with estimated low turnover rate (TR) for the
investigated species, which was significantly correlated

with MD, and congruent with the Gerking’s restricted
movement paradigm (RMP), which was tested directly in
this stream (Penczak, 2005).

The result of this study can be considered a warning to
efforts that attempt to estimate a population’s persistence
and stability on the basis of a few year study, even when
applying sufficient sampling methods (Simonson and
Lyons, 1995; Grossman et al., 1990; Pusey et al., 1998;
Gotelli et al., 2010). Grossman et al., (1990) urge managers
and scientists to exercise caution in the estimation of the
effects of anthropogenic disturbance on the populations’
parameters, and they suggests more long-term studies in
this matter. The dynamics of the density and standing crop
fluctuations of some species may be so slow that there are
doubts whether a few years’ data may be representative
enough for any stream or other freshwater habitat (Gard
and Flittner, 1974; Grossman et al., 1990; Matthews, 1998;
Jackson et al., 2001; Collins et al., 2000; Collie et al., 2008;
Gore et al., 2008; Beugly and Pyron, 2010). Some pub-
lished data indicate that a large population increase in some
species may occur in a stream because of favourable feed-
ing conditions along the stream (Mills and Mann, 1985),
which then strongly affects spawning success, and low
mortality of both juveniles and adults (Mann et al., 1984;
Mann, 1994; Allan, 1995; Matthews, 1998).

The answer to the title of the work is that species of fish
in the stream, which in the meantime was canalized, and
the climate also was changing, were subject to considerable
fluctuations, which cannot be clearly explain, despite of
fact that sampling methods were uniform during the whole
study period, which is a requirement of reliable and effi-
cient monitoring, as stated by Spellerberg (1991). Hence,
not without significance is the fact that fish densities and
standing crop were also standardized per constant unit of
area, which increases the reliability of this study. Quantita-
tive sampling methods were used in the study because
Gotelli et al. (2010), stated that qualitative sampling tech-
niques may have importance for fluctuation research.

CONCLUSIONS

According to Nielsen et al., (2013), climate impact
alone and in a short time will not allow for an accurate pre-
diction of the range of salmon in the Arctic, due to the com-
plexity of the adaptive response and biological interactions
that factor in successful colonization; moreover, it seems
to also present a limitation for other fish, especially in fresh-
water. In our study, air temperatures for the whole year, the
summer season, the winter season, and for a one-year time
lag, did not exert significant impact on the density and bio-
mass (Tab. 2). Precipitation for the whole year, and for the
May-Oct period, was barely significantly correlated with
biomass only. The three years of the highest precipitation
and mean air temperature did not coincide with the peaks
of density and standing crop (Fig. 2). Also, the stream reg-
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ulation did not appear to be responsible for fluctuations in
density and biomass in the post-regulation period (Tab. 1).
Density and biomass increased between 1988 and 1990,
and then remained high for two subsequent years. In 1993,
it decreased to the level recorded before regulation (Fig. 2).

Nothing was also found following the fate of individual
species between the two studied parameters concerning the
climate as well as regulation of the Dobrzynka Stream, oc-
curring during mid-term in the research (Fig. 3). There were
no species whereby the data suggested that density was af-
fected by regulation of the Dobrzynka Stream. Zero densi-
ties were recorded in both the unmodified and the regulated
stream for the majority of species. Grossman et al. (1990)
stated that it may be difficult to detect the effects of anthro-
pogenic disturbance using population data alone.

Natural decadal variations in climate can mask anthro-
pogenic effects and warming at regional scales for years or
even decades into the future (Głowacki and Penczak,
2013). A multifarious approach is needed that combines
physical, environmental and ecological factors with the ex-
pansion of the species’ range at the species, population and
individual levels. According to Nielsen et al. (2013), this
will require collaborations between scientists from different
branches of biological sciences. Nielsen et al. (2013), when
finalizing the subchapter Conclusions in their study, for-
mulated many remaining questions without answers, and
one of these also limited our study: which species are the
real generalists? The reality of changing climate conditions
has generated a wave of thinking where the impact on hu-
mans and other organisms causes great concern. A broad
scale of climate change presumably does not correlate with
short-term local conditions (Wootton, 1990).
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