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INTRODUCTION

Cyanobacterial blooms have been recognised as a
health issue in freshwater systems in many countries
(Briand et al., 2003; Falconer, 2008) mainly because some
species are capable of producing potent toxins that are
harmful to humans and animals. Currently there are two
types of cyanotoxins that are particularly problematic to
humans: hepatotoxins (cyclic peptides) and neurotoxins
(alkaloids) (Sivonen, 1999; Stewart et al., 2008; Wiegand
and Pflugmacher, 2005; Zurawell et al., 2005; Chen et al.,
2009). Toxin-producing cyanobacteria have been respon-
sible for serious cases of human and livestock poisoning
and deaths in a number of countries worldwide (e.g., in
Brazil, Australia and North America) (Francis, 1878;
Beasley et al., 1989; Azevedo et al., 2002; Cox et al.,
2005; Sotero-Santos et al., 2006).

In one of the most serious incidents in the tropics, 116
kidney dialysis patients in Northeast Brazil suffered from
liver failure, resulting in 52 fatalities, due to dialysis water
that was sourced from a nearby reservoir contaminated

with microcystins in 1996 (Carmichael, 1996; Joachimsen
et al., 1998; Carmichael et al., 2001; Komarek et al.,
2001; Azevedo et al., 2002). Since that incident some
studies have been carried out on several reservoirs in
South and Central America documenting blooms and pro-
genitor species (Díaz-Pardo et al., 1998; Carmichael et
al., 2001; Lind and Davalos-Lind, 2002; Ramirez et al.,
2002; Bittencourt-Oliveira et al., 2005; Frias et al., 2006;
Merino-Ibarra et al., 2007; Berry and Lind, 2010; Vascon-
celos et al., 2010; Rejmánková et al., 2011). A review by
Dorr et al. (2010) revealed that there has been increased
cyanobacterial bloom occurrence in water bodies in South
America requiring better methods for screening and test-
ing of cyanobacterial toxins.

Another case of human hepatoenteritis caused by
cyanobacterial toxin poisoning in a tropical area occurred
on Palm Island, Australia, in 1979, where 148 adults and
children were affected by the toxin in their drinking water
taken from a lake with high levels of the cyanobacterial
species Cylindrospermopsis raciborskii, which is known
to produce cylindrospermopsin, a newly identified hepa-
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totoxin at that time (Hawkins et al., 1985). These cases
illustrate the importance and need to understand the toxin
producing cyanobacterial species, their prevalence and
causes of blooms.

Although cyanobacterial blooms are a worldwide
phenomenon, there are differences in the typical species
and toxins found in temperate and tropical areas (Bar-
tram et al., 1999). However, most published studies
focus on cyanobacterial toxins and blooms in temperate
regions with considerably less work reported from trop-
ical areas. Nevertheless, as demonstrated by the cyan-
otoxin cases in Brazil and Australia, toxic cyanobacterial
blooms in tropical countries can occur with considerable
harmful effect. Within the tropics, cyanobacterial toxins
and blooms have been more intensively studied in cer-
tain countries such as Brazil, Australia and Thailand, but
an overall global review of blooms in the tropics is lack-
ing. This review aims to address this gap by highlighting
cyanobacterial bloom studies undertaken in tropical
areas. In this review, data on the i) prevalence, problem
taxa, toxin production and ii) influencing environmental
factors for toxic cyanobacterial blooms is assessed for
tropical countries across four continents. This informa-
tion is synthesised and evaluated to reveal trends across
tropical countries, which may be different from those in
sub-tropical and temperate locations.

METHODS

The literature was located using Web of Science and
Google Scholar using the keywords: cyanobacteria,
blooms, tropics and tropical countries, with specific coun-
try searches for the period between 1970 and 2013. For the
purpose of this review, the word bloom was defined as Alert
Level 1 by the World Health Organization (Bartram et al.,
1999), which denotes high biomass (cell counts of 2000
cells mL–1 or 0.2 mm3 L–1 biovolume or 1 μg L–1 chloro-
phyll a) of cyanobacterial species in a water body. In total,
142 papers covering 186 water bodies were obtained from
regional and international journals for the qualitative dis-
cussion of overall trends in cyanobacterial blooms. Percent-
ages of dominant cyanobacterial bloom genera were
calculated for all the tropical blooms reported. A subset of
66 papers covering 91 water bodies was chosen based on
information on cyanobacteria toxins found, for example,
microcystins (MC-RR & MC-LR) were found via LC-MS
testing. These papers were used to calculate percentage of
different cyanobacterial toxins detected for the toxic tropi-
cal cyanobacterial blooms reported.

A subset of 33 papers covering 48 water bodies was
selected for a meta-analysis of environmental factors in-
fluencing bloom formation. The criterion for choosing
these 33 studies was availability of data on the identifi-
cation of the bloom species, highest total nitrogen con-
centration (TN, mg L–1), highest total phosphorus

concentration (TP, mg L–1), and minimum and maximum
temperatures. In order to ascertain which factors were
more important for tropical bloom formation, metadata
on environmental variables and genera of cyanobacteria
were examined for relationships using non-metric mul-
tidimensional scaling (NMDS) (R, Vegan package, Ok-
sanen et al., 2013). Blooms were arranged by presence
or absence of dominant genera (Microcystis, Cylindros-
permopsis, Anabaena, and Planktothrix). An NMDS was
run on the genera data, which contained 48 data points
from tropical Asia, America, Australia and Africa. As
cyanobacterial biomass was not recorded by all of the
33 studies it was not used as a criterion for the meta-
analysis. The environmental variables (highest total ni-
trogen concentration, highest total phosphorus
concentration, total nitrogen to total phosphorus ratio
based on molar ratios, minimum and maximum temper-
atures) were then fitted onto the NMDS using envfit (R,
Vegan package, Oksanen et al., 2013). To analyse the ef-
fect of types of water bodies on cyanobacterial bloom
genera present, the meta-data created above was
analysed using NMDS and Adonis (Permutational Mul-
tivariate Analysis of Variance using Distance Matrices)
and plotted using ordiellipse (R, Vegan package, Oksa-
nen et al., 2013).

In order to analyse the relationship between nutrient
levels and microcystin levels, eight papers covering 14
water bodies were selected based on the availability of
information for i) maximum total microcystin concen-
tration (μg L–1); ii) nitrate (mg L–1) in the water body at
the time of the maximum microcystin concentration; iii)
phosphate (orthophosphate/soluble reactive phospho-
rous, PO4) (mg L–1) in the water body at the time of the
maximum microcystin concentration. A regression
analysis on nitrate, phosphate, N:P (nitrate: phosphate),
and maximum total microcystin concentration was then
carried out using Spearman’s correlation coefficient
(rho). For the analysis of maximum temperatures and
microcystin concentration, 11 papers covering 17 water
bodies were selected based on the availability of infor-
mation on i) maximum (highest) temperatures of water
body during sampling and ii) maximum total micro-
cystin concentration (μg L–1). A regression analysis on
the maximum temperature of the water body and the
maximum total microcystin concentration was carried
out using Spearman’s correlation coefficient (rho). For
the analysis of Microcystis biomass and microcystin
concentration, eight papers covering 27 water bodies
were selected based on availability of information: i)
total microcystin concentration (μg L–1); ii) cell count of
Microcystis from the same water body. A regression
analysis on the Microcystis cell count and microcystin
concentration was then carried out using Spearman’s
correlation coefficient (rho).
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RESULTS AND DISCUSSION

Prevalence, problem taxa, toxin production

General patterns of cyanobacteria
and cyanotoxins across tropical areas

Microcystis was the most prevalent bloom-causing
genus in tropical Africa and Asia, while Cylindrospermop-
sis was the most common in tropical Australia and the sec-
ond most prevalent genus in tropical Asia (Fig. 1).
Microcystis and Cylindrospermopsis blooms have occurred
in similar frequency in tropical America. Anabaena blooms
were the second most frequently occurring genus in tropical
Africa. As expected, the frequency of cyanobacterial bloom
occurrence in tropical Australia was much lower compared
to that of other tropical countries, due to the relatively
smaller land area of tropical northern Australia.

The most frequently encountered toxin throughout the
tropics was microcystin except for tropical Australia
where cylindrospermopsin was more frequently encoun-
tered (Fig. 2). The frequent occurrence of cylindrosper-
mopsin in Australia was expected given the higher
frequency of recorded Cylindrospermopsis blooms (Grif-
fiths and Saker, 2003). The second most encountered
toxin in Africa was anatoxin, produced by blooms of An-
abaenopsis, Arthrospira and Anabaena species (Ballot et
al., 2005; Odokuma and Isirima, 2007). Despite the pres-
ence of Anabaena in tropical Asia, anatoxin was not de-
tected, with the only two toxins detected being
microcystin and cylindrospermopsin. The lack of expert-
ise required for testing for neurotoxins may partly ac-
count for the lack of documented occurrences (Jewel et
al., 2003).

Saxitoxin was detected in tropical American and trop-
ical African blooms by HPLC and various other detection

methods (ESI, LC-MS, FLD). This toxin was produced
by blooms of Cylindrospermopsis and Lyngbya in Brazil,
Mexico, Guatemala and Nigeria (Lagos et al., 1999;
Bouvy et al., 1999; Molica et al., 2005; dos Anjos et al.,
2006; Berry and Lind, 2010; Rejmánková et al., 2011;
Sant’Anna et al., 2011). Comparisons of the neurotoxic
Cylindrospermopsis strains from Brazil and Mexico re-
vealed the Brazilian strain to have acute neurotoxicity
from the presence of saxitoxin, neosaxitoxin and decar-
bamoylsaxitoxin and the Mexican strains isolated were
found to be non-toxic (Bernard et al., 2003).

Patterns in toxin testing across the tropics

The percentage of cyanobacterial blooms that undergo
toxin testing has increased in tropical Africa and America
and remained relatively constant in tropical Australia from
the 1990s to the present, but decreased in tropical Asia.
Many blooms that occur in tropical Asia are not tested for
toxins despite reports of fish kills or harm to livestock
(Tab. 1); this could be due to a lack of expertise and cyan-
otoxin testing equipment (Jewel et al., 2003). Another rea-
son could be a greater focus on the general limnology of
lake ecosystems rather than cyanobacterial bloom forma-
tion or its management (Mizuno and Mori, 1970; Lewis
1973, 1978; Green et al., 1976, 1978). Toxin testing in
India, Bangladesh, Philippines, Singapore, Sri Lanka,
Thailand, and Vietnam have been carried out using HPLC
(high performance liquid chromatography) and various de-
tection methods from UV (ultraviolet) to MALDI-TOF
(matrix assisted laser desorption time of flight mass spec-
trometry) (Tab. 1). Blooms in Australian water bodies were
tested using mouse bioassays in the 1990s, and later by
HPLC for more detailed toxin results (Saker and Griffiths,
2001; Griffiths and Saker, 2003; White et al., 2003; Bor-

Fig. 1. Proportion of tropical cyanobacterial genera, out of total
number of tropical cyanobacterial blooms.

Fig. 2. Proportion of different cyanobacterial toxins, out of total
number of toxic tropical cyanobacterial blooms.
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mans et al., 2004). In the case of tropical Africa, many of
the blooms were detected in reservoirs and lakes used for
drinking water, highlighting a need for toxicity testing in
these countries (Akin-Oriola et al., 2006). Past studies of
bloom occurrence and toxin testing via ELISA test
kits/HPLC and MALDI-TOF MS have been carried out in

Ethiopia, Ghana, Nigeria, Uganda, Kenya, Tanzania and
Zimbabwe but few or no studies in other central African
countries, such as The Democratic Republic of Congo,
Central African Republic and South Sudan (Tab. 2, Fig. 3).

An increase in toxin testing in tropical America was
most prominently seen in Brazil, Mexico and Guatemala

Tab. 1. Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical Asia and Australia.

Country Potential toxic species found Toxin test Toxins found Amount of toxins References

Australia Cylindrospermopsis raciborskii*, Mouse bioassay CYN & MC CYN: 1.0-20 μg/L, MC: Hawkins et al., 1985;
Aphanizomenon sp., Anabaena sp., & HPLC/MS 1000-2500 μg/L Hawkins and Griffiths, 1993;
Anabaena tenericaulis & McGregor and Fabbro, 2000;
Microcystis panniformis* Saker and Griffiths, 2001;

Griffiths and Saker, 2003;
White et al., 2003;
Bormans et al., 2004

Bangladesh Microcystis aeruginosa*, RP-HPLC & MC-LR,-RR,-YR 0.14-1360 μg/L Welker et al., 2004;
Microcystis sp.*, HPLC/LCMS & Ahmed et al., 2008;
Anabaena flos-aquae & HPLC/UV Ahmed and Luckas, 2008;
Planktothrix sp. Jahan et al., 2010

Cambodia Microcystis aeruginosa Not tested Not tested Not tested Campbell et al., 2006

Hong Kong Microcystis aeruginosa, Not tested Not tested Not tested Hodgkiss, 1974
M. Incerta & 
Anabaena  flos-aquae

India Microcystis aeruginosa*, RP-HPLC/ MC-LR,-RR 280-1540 μg/g Agrawal et al., 2006;
M. novacekii, M. viridis*, MALDI-TOF & Tyagi et al., 2006;
M. wesenbergii & M. icthyoblabe RP-HPLC/ Prakash et al., 2009;

LC/ESI/MS Sangolkar et al., 2009

Indonesia Microcystis aeruginosa, Not tested Not tested Not tested Padisak, 1997; 
Cylindrospermopsis raciborskii & Prihantini et al., 2008; 
Planktothrix agardhii Retnaningdyah et al., 2010

Malaysia Microcystis spp., Not tested Not tested Not tested Rouf et al., 2008;
Cylindrospermopsis raciborskii & Harith and Hassan, 2011;
Planktothrix agardhii Mansoor et al., 2011

Myanmar Microcystis spp. Not tested Not tested Not tested Green, 2010

Philippines Microcystis aeruginosa*, HPLC/ MC-LR 11472-12158 μg/g Cuvin-Aralar et al., 2002;
Cylindrospermopsis raciborskii MALDI-TOF Baldia et al., 2003;

Baldia et al., 2007

Singapore Microcystis spp.*, HPLC/LC–MS MC-LR 2660-2800 μg/L Yang and Chiam-Tai, 1991;
Cylindrospermopsis raciborskii, Sim, 2009; Te and Gin, 2011
Planktothrix sp. Anabaena sp. &
Aphanizomenon sp.

Sri Lanka Microcystis aeruginosa*, HPLC/ET-MS MC-LR,-RR 0.8-81 μg/L Jayatissa et al., 2006
M.incerta*, Anabaena sp. &
Planktothrix sp.

Thailand Microcystis aeruginosa*, ELISA/HPLC-MS MC-LR,-RR,-YR, MC: 2.2±3.0 μg/L and Mahakhant et al., 1998;
M. wesenbergii & CYN 9.4±2.0 μg/L Li et al., 2001;
Cylindrospermopsis raciborskii* CYN: 1020 μg/g Wang et al., 2002;

Prommana et al., 2006;
Khuantrairong et al., 2008

Vietnam Microcystis spp.*, Jaaginema sp., ELISA/HPLC-UV MC-LR,-RR 2.94 μg/L and Nguyen et al., 2007a;
Arthrospira masartii, 18.94 μg/L Nguyen et al., 2007b;
Oscillatoria perornata, Dao et al., 2010
Planktothrix zahidii &
Pseudanabaena cf. moniliformis*

MC, Microcystin; CYN, Cylindrospermopsin; *species tested for toxins.
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with testing carried out via mouse and fish bioassay,
ELISA & HPLC/PDA, MALDI-TOF (Tab. 3). This in-
crease was probably motivated by the two incidents that
led to human fatalities in 1988 and 1996 (Teixeira et al.,
1993; Domingos et al., 1999; Carmichael et al., 2001;
Azevedo et al., 2002; Molica 2002). Few studies have
been conducted in other countries such as Panama and
Colombia (Bartram et al., 1999; Dorr et al., 2010).

Problem taxa - Prevalence in tropical water bodies
and toxins produced

Microcystis

Tropical Asia and Australia

The majority of blooms (77%) in tropical Asia were
caused by Microcystis spp., usually Microcystis aeruginosa
(Fig. 1; Tab. 1). Several species (M. aeruginosa, M. no-

Tab. 2. Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical Africa.

Country Potential toxic species found Toxin test Toxins found Amount of toxins References

Cameroon Planktothrix mougeotii, Not tested Not tested Not tested Kemka et al., 2003;
Oscillatoria putrida & Green, 2010
Microcystis spp.
(M.aeruginosa, M. wesenbergii)

Cote d’lvoire Unknown bloom-forming species Not tested Not tested Not tested Bouvy et al., 1998;
Arfi et al., 2001

Ethiopia Microcystis sp.* ELISA No MC found No MC found Gremberghe et al., 2011

Ghana Microcystis aeruginosa* & HPLC MC-RR 0.03-3.21 μg/L Addico et al., 2006
Anabaena flos-aquae

Kenya Microcystis aeruginosa*, ELISA/HPLC- MS MC-LR & MC: 1.6-39.0 μg/g Ballot et al., 2005;
Arthrospira fusiformis* & MALDI-TOF Anatoxin-a Anatoxin: 0.5-2.0 μg/g Haande et al., 2007;
Anabaenopsis abijatae* Kotut et al., 2010

Malawi Anabaena sp. Not tested Not tested Not tested Gondwe et al., 2007

Nigeria Cylindrospemopsis sp*. ELISA/ MC, CYN, MC: 1.4-3.8 μg/L Anadu et al., 1990;
Anabaena sp.*, Microcystis sp.* HPLC-MALDI- Anatoxin-a, Kemdirim, 2000; Ezra and
(Microcystis aeruginosa, TOF Anatoxin-a(s), Nwankwo, 2001;
M. flos-aquae, M. wesenbergii), STX Akin-Oriola, 2003;
Lyngbya sp.*, Akin-Oriola et al., 2006;
Aphanizomenon flos-aquae, Odokuma and Isirima, 2007;
Oscillatoria limnetica & Chia et al., 2009;
Anabaena spiroides Okechukwu and Ugwumba,

2009; Onyema, 2010;
Ajuzie, 2012

Senegal Microcystis aeruginosa & Mouse bioassay No CYN/STX No CYN/STX found Berger et al., 2006;
Cylindrospermopsis raciborskii found Bouvy et al., 2006;

Dufour et al., 2006

Tanzania Anabaena sp., Microcystis sp.* HPLC-DAD/ MC-RR 0-1.0 μg/L Sekadende et al., 2005
MALDI-TOF

Uganda Microcystis aeruginosa, ELISA, MC-RR, 0.2-61.2 μg/L Ganf, 1974; Komarek and
M. flos-aquae, Anabaenopsis spp., HPLC/MALDI- (Asp3) MC-RR, Kling, 1991; Oliver and
Aphanizomenon sp., Anabaena sp. TOF & LC- MC-YR, (Asp3) Ganf, 2000; Haande et al.,
& Cylindrospermopsis raciborskii MS/MS MC-YR,MC-LR, 2007; Haande et al., 2008;

MC-RY, (Asp3) Green, 2010; Okello et al.,
MC-RY 2010; Okello & Kurmayer,

2011; Poste et al., 2013

Zimbabwe Microcystis aeruginosa*, ELISA MC-LR 0.2-22.48 μg/L Ramberg, 1987; 
M. wesenbergii, M. novacekii, Magadza, 2006;
C. raciborskii, Lyngbya sp., Mhlanga et al., 2006a;
Anabaena sp., Aphanizomenon sp. Mhlanga et al., 2006b;
& Oscillatoria sp. Magadza, 2008-2009;

Kunz, 2011; Tendaupenyu,
2012; Mhlanga, n.d.

MC, Microcystin; CYN, Cylindrospermopsin; *species tested for toxins.
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vacekii, M. viridis, M. wesenbergii and M. ichthyoblabe)
occurred as blooms in different countries and samples con-
taining M. aeruginosa, M. viridis and M. incerta (now
Aphanocapsa incerta) produced microcystins (microcystin
LR, RR and YR) (Tab. 1). In Asia, 66% of Microcystis
blooms produced microcystins; the remaining blooms in
Myanmar and Indonesia were not tested for toxins (Fig. 4,
Tab. 1). Evidence from Myanmar and Indonesia were based
on papers that lacked taxonomic detail and toxin analysis
(Tab.1). Therefore, the cyanobacterial bloom occurrences
from these countries are likely to be an underestimate of
actual cyanobacterial bloom occurrences.

Microcystis blooms in Bangladesh, Sri Lanka, Viet-
nam, Thailand, Singapore and the Philippines have
recorded microcystin levels above the WHO drinking

water guideline level of 1 μg L–1 (Cuvin-Aralar et al.,
2002; Wang et al., 2002; Baldia et al., 2003; Welker et al.,
2004; Jayatissa et al., 2006; Prommana et al., 2006;
Nguyen et al., 2007b). In India, livestock poisoning as
well as skin lesions in children were reported from the
shores of lakes and reservoirs (Agrawal et al., 2006). A
bloom in Bangladesh may have resulted in massive fish
kills and reduction in livelihood of the communities that
depend on fishing for subsistence (Jewel et al., 2003);
however, no toxin analysis was carried out on the bloom
and fish samples (Jewel et al., 2003). Other studies on Mi-
crocystis blooms in Bangladesh by the World Health Or-
ganization (Welker et al., 2004) confirm the presence of
microcystins in the drinking water bodies.

There was only one notable Microcystis bloom in trop-

Fig. 3. Map of tropical Africa showing locations of cyanobacterial blooms, horizontal lines enclose the tropical region around the equator. 
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ical Australia, recorded from Lake Elphinstone, caused by
Microcystis panniformis, with a very high microcystin
level of 2500 μg L–1 (White et al., 2003). It is notable that
M. panniformis was not found to produce high levels of
toxins in tropical Asia (Tab. 1) although it formed a bloom
with extremely high toxin levels in tropical Australia.

Tropical Africa

Microcystis was the bloom-causing genus in 66% of
blooms in tropical African countries (Figs. 1 and 3; Tab. 2).
The main species responsible were M. aeruginosa, M. flos-
aquae and M. wesenbergii, which produced microcystins
(MC–RR, (Asp3) MC–RR, MC–YR, (Asp3) MC–YR,
MC–LR, MC–RY, (Asp3) MC–RY) in Ethiopia, Ghana,
Tanzania, Nigeria, Uganda and Zimbabwe (Tab. 2). Of

these countries, microcystin levels higher than 1 μg L–1 were
recorded from water bodies in Ghana, Nigeria, Uganda and
Zimbabwe (Ndebele and Mhlanga, 2006; Chia et al., 2009;
Kotut et al., 2010; Sitoki et al., 2012). The highest micro-
cystin level of 61.2 μg L–1 was detected in a cyanobacterial
bloom in Lake Saka, Uganda (Okello et al., 2010; Okello
and Kurmayer, 2011, Poste et al., 2013). Little is known
about toxin production by Microcystis blooms in Cameroon
and Senegal as they have not been tested (Tab. 2).

Tropical America

In tropical America, 35% of total blooms were caused
by species of Microcystis, namely M. aeruginosa, M. pan-
niformis, M. protocystis, M. novacekii and M. viridis (Figs.
1 and 5; Tab. 3), with concentrations of microcystins above

Tab. 3. Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical America.

Country Potential toxic species found Toxin test Toxins found Amount of toxins References

Brazil Cylindrospermopsis raciborskii*, Mouse and fish MC-LR,MC-YR, MC-LR: 19.5 μg/L Branco and Senna, 1994;
Microcystis aeruginosa*, bioassay, ELISA CYN, STX, NEO, STX: 9.3 MU/mg Bouvy et al., 1999;
M. novacekii*, M. panniformis*, & HPLC/PDA, GTX1,GTX2, dry cells Domingos et al., 1999;
M. protocystis*, M. viridis*, MALDI-TOF GTX3, GTX4, Bouvy et al., 2000;
Planktothrix agardhii*, MC-RR, Anatoxin-a(s) Huszar et al., 2000;
Aphanizomenon sp., Oscillatoria sp., MC-hRhR, Carmichael et al., 2001;
Anabaena oumiana, A. crassa; Azevedo et al., 2002;
Dolichospermum circinalis Molica, 2002; 
(formerly Anabaena circinalis) & Bittencourt-Oliveira, 2003;
Radiocystis fernandoi* Vieira et al., 2003;

Vieira et al., 2005;
dos Anjos et al., 2006;
Frias et al., 2006;
Sotero-Santos et al., 2006;
Sant’Anna et al., 2007;
Sant’Anna et al., 2008;
Figueredo and Giani, 2009;
Werner and Laughinghouse IV,
2009; Molica et al., 2005;
Bouvy et al., 2003;
Bittencourt-Oliveira et al., 2011;
Moura et al., 2007;
Ferrão-Filho et al., 2007;
Piccin-Santos & Bittencourt,
2012; Soares et al., 2012

Guatemala Lyngbya hieronymusii*, LC-MS/MS CYN & STX CYN: 0.6-1.2 ng/L, Rejmánková et al., 2011
L. birgei*, & L. robusta* STX: 2.9-5.8 ng/L

Mexico Microcystis aeruginosa*, ELISA/HPLC/ MC-LR,-FR, MC: 4.9 μg/L-78 μg/L, Díaz-Pardo et al., 1998;
M. panniformis*, M. protocystis*, LC-MS/MALDI- HYR, YR, HtYR, CYN: 21.34±2.00 ng/L, Lind and Davalos-Lind, 2002;
Planktothrix agardhii*, TOF CYN & STX STX: 5.30±2.56 ng/L Ramirez et al., 2002;
Cylindrospermopsis catemaco*, Romero, 2002
C. philippinensis*, Pseudanabaena Merino-Ibarra et al., 2007;
mucicola, Anabaena sp., Berry and Lind, 2010;
Nostoc sp. & Oscillatoria sp. Vasconcelos et al., 2010

Venezuela Microcystis aeruginosa, Not tested Not tested Not tested Lewis, 1986
Anabaena volzii, A. spiroides &
Anabaenopsis sp.

MC, Microcystin; CYN, Cylindrospermopsin; *species tested for toxins.

Non
-co

mmerc
ial

 Mouse and fish MC-LR,MC-YR, MC-LR: 19.5 μg/L Branco and Senna, 1994;

Non
-co

mmerc
ial

 Mouse and fish MC-LR,MC-YR, MC-LR: 19.5 μg/L Branco and Senna, 1994;
bioassay, ELISA CYN, STX, NEO, STX: 9.3 MU/mg Bouvy 

Non
-co

mmerc
ial

 bioassay, ELISA CYN, STX, NEO, STX: 9.3 MU/mg Bouvy 
& HPLC/PDA, GTX1,GTX2, dry cells

Non
-co

mmerc
ial

 
& HPLC/PDA, GTX1,GTX2, dry cells

Non
-co

mmerc
ial

 
MALDI-TOF GTX3, GTX4,

Non
-co

mmerc
ial

 
MALDI-TOF GTX3, GTX4,
MC-RR, Anatoxin-a(s) 

Non
-co

mmerc
ial

 
MC-RR, Anatoxin-a(s) 

sp., MC-hRhR,

Non
-co

mmerc
ial

 
sp., MC-hRhR,

us
e Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical America.

us
e Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical America.

us
e Country Potential toxic species found Toxin test Toxins found Amount of toxins Referencesus
e Country Potential toxic species found Toxin test Toxins found Amount of toxins References

Mouse and fish MC-LR,MC-YR, MC-LR: 19.5 μg/L Branco and Senna, 1994;us
e 

Mouse and fish MC-LR,MC-YR, MC-LR: 19.5 μg/L Branco and Senna, 1994;
bioassay, ELISA CYN, STX, NEO, STX: 9.3 MU/mg Bouvy us

e 
bioassay, ELISA CYN, STX, NEO, STX: 9.3 MU/mg Bouvy 

on
ly

niformis, M. protocystis, M. novacekii 

on
ly

niformis, M. protocystis, M. novacekii 
1 and 5; Tab. 3), with concentrations of microcystins above

on
ly1 and 5; Tab. 3), with concentrations of microcystins above

Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical America.
on

ly
Summary of cyanobacterial blooms, prevalence and toxins recorded in tropical America.



212 M.A.D. Mowe et al.

1 μg L–1 recorded from lake and reservoir water in Mexico
and Brazil (Tab. 3). Microcystins were also detected from
Radiocystis fernandoi in Brazil (Vieira et al., 2003), a
species that did not produce toxins in tropical Asia, Aus-
tralia or Africa. The greatest number of microcystin variants
(MC-LR, FR, HYR, YR, HtYR) was detected from water
bodies in Mexico (Tab. 3). Although Microcystis aerugi-
nosa was detected in Venezuela, it was not tested for toxins
and thus, little is known about occurrences of microcystins
in this country (Tab. 3). A study in Sao Paulo, Brazil, found
that Microcystis strains could produce paralytic shellfish
poisons or PSPs, namely GTX4 (47.6%), GTX2 (29.5%),
GTX1 (21.9%), GTX3 (1.0%) as well as a microcystin
(MC-RR) (Sant-Anna et al., 2011). The production of neu-

rotoxins by Microcystis has never been recorded in any of
the other tropical blooms.

Cylindrospermopsis

Tropical Asia and Australia

The second most prevalent genus in tropical Asia was
Cylindrospermopsis (Figs. 1 and 4). This genus was en-
countered in six out of thirteen countries in tropical Asia
(Tab. 1). The genus was bloom-forming in Singapore and
potentially so in Thailand and Vietnam (Khoo et al., 1977;
Li et al., 2001; Pongswat et al., 2004; Meesukko et al.,
2007; Khuantrairong and Traichaiyaporn, 2008; Dao et
al., 2010). The only bloom-forming species was Cylin-

Fig. 4. Map of tropical Asia and Australia showing locations of cyanobacterial blooms, horizontal lines enclose the tropical region
around the equator.
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drospermopsis raciborskii, although recent taxonomic re-
visions now recognise more than one species, e.g., coiled
morphotypes of C. raciborskii are now known as C.
philippinensis (Komárek and Mareš, 2011). Even though
C. raciborskii has been bloom-forming in one country and
commonly found in two others, cylindrospermopsin pro-
duction of 1.02 mg g–1 was recorded from only one study
in Thailand (Li et al., 2001). The toxin level of this strain
was much lower than an Australian strain cultured in the
same conditions (1.358 mg g–1) (Li et al., 2001).

In contrast to tropical Asia, Cylindrospermopsis was
the dominant bloom-forming genus in tropical Australia,
accounting for seven out of eight blooms (Figs. 1 and 4;
Tab. 1). C. raciborskii blooms from Palm Island were
highly toxic with cylindrospermopsin levels of up to 20
μg L–1 recorded (McGregor and Fabbro, 2000; Griffiths
and Saker, 2003). Additionally, C. raciborskii blooms
from Palm Island were strongly implicated in the severe
hepatoenteritis poisoning of 149 people in 1979 (Hawkins
et al., 1985).

Tropical Africa

Cylindrospermopsis blooms were the second most
prevalent blooms in tropical Africa (Fig. 1). It was
found in four out of eleven countries including Nigeria,
Senegal, Uganda and Zimbabwe (Tab. 2; Fig. 3). The
only species recorded was Cylindrospermopsis raci-
borskii; however, only strains from ponds in Nigeria
were found to produce cylindrospermopsin (Odokuma
and Isirima, 2007). Strains from Kazinga Channel,
Uganda and Lake Guiers, Senegal were isolated and
tested for toxins by LC-MS and mouse bioassay respec-
tively, but were not found to produce any cylindrosper-
mopsin and saxitoxins (Lake Guier isolates) (Haande et
al., 2008; Berger et al., 2006).

Tropical America

Cylindrospermopsis was the most encountered bloom
genus in the tropical Americas occurring in 47% of all
documented cyanobacterial blooms (Figs. 1 and 5). Three
species were frequently encountered, C. raciborskii, C.
catemaco and C. philippinensis (Tab. 3). These blooms
were recorded from Brazil and Mexico (Fig. 5; Tab. 3).
Saxitoxins (STX, NEO, GTX2 and GTX3) and cylindros-
permopsins were produced by several strains of Cylin-
drospermopsis isolated from Brazil and Mexico (Bouvy
et al., 1999; Molica et al., 2002; Molica et al., 2005; dos
Anjos et al., 2006; Frias et al., 2006; Ferrão-Filho et al.,
2007; Berry and Lind, 2010). The Cylindrospermopsis
blooms in the tropical Americas differ from the Cylindros-
permopsis strains isolated in Thailand and Australia, in
that they produced saxitoxin in addition to cylindrosper-
mopsins (Tabs. 1, 2 and 3).

Other problem taxa

Anabaena

Less than 7% of total blooms that occurred in tropical
Asia were dominated by Anabaena spp. (Tab. 1, Fig. 4).
These blooms were not tested for toxins, although a
bloom of Anabaena flos-aquae in Bangladesh caused
massive fish kills (Jewel et al., 2003). Anabaena blooms
also occurred in Nigeria, Tanzania, Ghana, and Malawi
(Tab. 2; Fig. 3). Microcystin variants were detected in raw
water in Ghana containing A. flos-aquae and Microcystis
aeruginosa, thus, toxin production could not be attributed
specifically to A. flos-aquae (Addico et al., 2006). The
only Anabaena sp. blooms that tested positive for ana-
toxin-a and anatoxin-a(s) occurred in Nigeria (Odokuma
and Isirima 2007). In Tapacura Reservoir in Brazil,
blooms of Anabaena spiroides co-dominated with Cylin-
drospermopsis raciborskii. Anabaena spiroides was found
to produce anatoxin-a(s) and a mixed bloom sample of C.
raciborskii and A. spiroides was found to contain saxitox-
ins (Stx and NeoStx) (Molica et al., 2005).

Planktothrix

Planktothrix blooms were found in four out of thirteen
tropical Asian countries including Malaysia, Indonesia, Viet-
nam, Singapore and Thailand (Li et al., 2001; Merican et
al., 2006; Nguyen et al., 2007b; Prihantini et al., 2008;
Pham et al., 2011). Planktothrix agardhii, a possible toxin
producing species, is currently known to form blooms in In-
donesia and Brazil (Akcaalan et al., 2006; Moura et al.,
2011). P. agardhii blooms in Carpina Reservoir, Brazil were
found to co-dominate with C. raciborskii. These blooms
were not tested for toxins, although some strains of P. agard-
hii can produce hepatotoxins (Janse et al., 2005).

Planktothrix zahidii was bloom-forming in Vietnam
(Nguyen et al., 2007a). However, this species did not pro-
duce any microcystins. Toxin testing on other Plank-
tothrix species in Malaysia, Indonesia, Singapore and
Thailand has yet to be reported.

Pseudanabaena

While microcystins are mostly produced by Microcys-
tis spp., one microcystin variant (MC-LR) was also pro-
duced by a strain of Pseudanabaena cf. moniliformis
isolated in Vietnam (Tab. 1). This species was detected in
lower concentrations in the reservoirs compared with Mi-
crocystis spp. Another species, Pseudanabaena mucicola,
was also recorded in water bodies in Mexico and Brazil
and Pseudanabaena sp. was recorded in Bangladesh
(Welker et al., 2004; Frias et al., 2006; Vasconcelos et al.,
2010). Toxin testing was carried out on water bodies in
all three countries containing P. mucicola and Pseudan-
abaena sp., but the microcystin level could not be attrib-
uted to either species due to the presence of Microcystis
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spp. It is important to note that Pseudanabaena is similar
in morphology to Cylindrospermopsis, thus, records of
Pseudanabaena in Mexico, Brazil and Bangladesh
(Welker et al., 2004; Frias et al., 2006; Vasconcelos et al.,
2010), which did not include pictures and formal descrip-
tions of Pseudanabaena species could not be verified, and
might potentially be misidentifications.

Arthrospira and Anabaenopsis
Blooms of Arthrospira fusiformis and Anabaenopsis

abijitae that produced anatoxin-a were recorded in the
Kenyan rift lakes (Ballot et al., 2005; Odokuma and Isir-
ima, 2007) (Tab. 2; Fig. 3). These species were otherwise
not bloom-forming in any other tropical country.

Lyngbya
Lyngbya spp. blooms were recorded in Guatemala

and Nigeria, with the species from Guatemala (L. hi-
eronymusii, L. birgei, and L. robusta) producing saxi-
toxins and cylindrospermopsins and the species from
Nigeria (Lyngbya sp.) producing only saxitoxins
(Odokuma and Isirima, 2007; Rejmánková et al., 2011).
These bloom-forming species were rare or absent in
other tropical regions. The levels of cylindrospermopsin
and saxitoxin recorded from Guatemala were relatively
low (CYN: 0.6 to 1.2 ng l–1, STX: 2.9 to 5.8 ng L–1) and
thus, do not appear to pose an immediate danger in
water supplies. However, these blooms should be mon-
itored for any changes in toxin production level (Re-
jmánková et al., 2011). The level of saxitoxins in
blooms of Lyngbya sp. from the Sombreiro River in
Nigeria was not quantified, and thus, warrants further
testing to ascertain the level of saxitoxins present
(Odokuma and Isirima, 2007).

Fig. 5. Map of tropical America showing locations of cyanobacterial blooms, horizontal lines enclose the tropical region around the equator. 
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INFLUENCING ENVIRONMENTAL FACTORS
FOR TOXIC CYANOBACTERIAL BLOOMS 

Many factors contribute to the occurrence of
cyanobacterial blooms. Most cyanobacterial blooms in
temperate regions occur in the summer when temperature,
light and nutrient conditions are suitable for cyanobacte-
rial dominance over other species in a lake phytoplankton
community (Jöhnk et al., 2008; Davis et al., 2009). This
predictability of cyanobacterial blooms in temperate re-
gions allows preventive measures to be implemented to
reduce their occurrence in water bodies used for potable
purposes (Mitrovic et al., 2011). Tropical cyanobacterial
blooms tend to be affected by temperature, nutrient input,
and brief periods of drought and heavy rain (Bouvy et al.,
2000; Baldia et al., 2003). Unlike temperate bloom events
that occur in the warmer months and last for the entirety
of the summer, tropical bloom events can occur at any
time of the year and usually last for a few weeks at a time
(Huszar et al., 2000; Figueredo and Giani, 2009; Prakash
et al., 2009).

Seasonality in the tropics

Some water bodies in the tropics encounter a distinct
seasonality in wet and dry periods, with some dry periods
lasting several months (Figueredo and Giani, 2009). Nitro-
gen-fixing species were found to be bloom-forming during
the dry season, due to strong thermal stratification and
water column stability (Sprober et al., 2003). Since nitro-
gen fixing genera such as Anabaena and Cylindrospermop-
sis are able to fix atmospheric nitrogen for growth, these
genera are able to compete in conditions of lower nitrogen,

for example, after a long period of stratification
(Khuantrairong et al., 2008; Bormans et al., 2004; Hawkins
and Griffiths, 1993; Hawkins, 1985; Saker and Griffith,
2001; Komarek and Kling, 1991; Okechukwu and Ug-
wumba, 2008; Berger et al., 2006; Dufour et al., 2006;
Gondwe et al., 2007; Branco and Senna, 1994; Bouvy et
al., 1999; Bouvy et al., 2003; Vieira et al., 2005; Vieira et
al., 2003). Some studies documented Microcystis blooms
in the wet season due to elevated nutrient levels in the var-
ious water bodies, occurring after periods of heavy rainfall
(Ochumba and Kibaara, 1989; Makahant et al., 1998; Sa-
lonen et al., 1999; Arfi et al., 2001; Kitaka et al., 2002;
Wang et al., 2002; Welker et al., 2004; Sekandende et al.,
2005; Meesuko et al., 2007; Krishnan, 2008; Onyema
2010; Sitoki et al., 2012). Although wet/dry seasonality in
the tropics can contribute to cyanobacterial blooms, some
water bodies with distinct dry and wet seasons do not show
seasonality in cyanobacterial bloom occurrence (Figueredo
and Giani, 2009; Werner and Laughinghouse, 2009; Frias
et al., 2006; dos Anjos et al., 2006).

Effects of nutrients and temperature
on tropical blooms

Based on the results of the NMDS, highest total nitrogen
(TN) concentration was significantly related to the occur-
rences of specific cyanobacterial genera (Fig. 6) (P-
value=0.025*<Pcritical=0.05). Although total nitrogen was
non-linearly associated with dominance of cyanobacterial
genera, as seen from the surface fitting in Fig. 6, higher ni-
trogen levels were more associated with Microcystis
blooms, while lower nitrogen levels were associated with
Cylindrospermopsis blooms. Maximum temperature was
also significantly related to cyanobacterial genera (Fig. 6)
(P-value=0.029*. <Pcritical=0.05). Higher maximum temper-
ature was more associated with Cylindrospermopsis blooms
compared to Microcystis and Anabaena blooms (Fig. 6).

The results of this meta-analysis corroborates some
findings from individual studies across all regions, which
identify elevated total nitrogen concentrations as one of
the more important factors in the development of tropical
Microcystis blooms (Mahakhant et al., 1998; Huszar et al.,
2000; Cuvin-Aralar et al., 2002; Welker et al., 2004; Jay-
atissa et al., 2006; Magadza, 2006; Ghosh et al., 2008;
Chia et al., 2009; Rejmánková et al., 2011). Other factors
such as high temperature do contribute to Microcystis
bloom formation, however, the role of temperature was not
as important as total nitrogen concentration (Fig. 6). Some
studies have found that higher temperatures favour Cylin-
drospermopsis blooms (Bouvy et al., 2000; Huszar et al.,
2000; Saker and Griffiths, 2001; Berger et al., 2006; Du-
four et al., 2006; Ghosh et al., 2008; Figueredo and Giani,
2009), while high total nitrogen concentration may not be
as important for Cylindrospermopsis bloom occurrence,
due to the fact that Cylindrospermopsis are nitrogen-fixing

Fig. 6. Non-metric multidimensional scaling of tropical
cyanobacterial blooms overlayed with maximum nitrogen levels
and maximum temperatures (stress<0.01), arrows indicate ni-
trogen and temperature effects on bloom genera. Oblique lines
represent smoothers connecting total nitrogen concentrations
and intersecting lines represent smoothers connecting maximum
temperature values.
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cyanobacterial genera (Bouvy et al., 1999; Rustadi et al.,
2002; Gondwe et al., 2007; Khuantrairong and Traichaiya-
porn, 2008). Comparing this outcome to temperate areas,
Cylindrospermopsis blooms in France are similarly af-
fected by high temperature (Briand et al., 2002). Higher
temperatures were found to be a key factor in germination
of akinetes (Briand et al., 2002). However, it is important
to note that a combination of these factors, and not a single
factor alone, usually leads to the development of a bloom
(Paerl et al., 2001; Jacoby et al., 2003).

Highest total phosphorus concentration was found to
be non-significant (P-value=0.669. >Pcritical=0.05) in rela-
tion to the genera of bloom-forming cyanobacteria from
the tropics in this meta-analysis. This could be due to the
fact that TN:TP ratios were below 23:1 in most studies
surveyed indicating non-limiting phosphorus conditions
according to Guildford and Hecky (2000) and thus, the
highest total phosphorus did not have any significant ef-
fect on the genera of bloom-forming cyanobacteria.

The ratios of total nitrogen:total phosphorous (TN:TP)
were also found to be non-significant (P-value=0.832 >
Pcritical=0.05) in relation to genera of bloom-forming
cyanobacteria. This surprising outcome may not necessar-
ily be due to the reduced importance of TN:TP in deter-
mining cyanobacterial dominance, but in the lack of
long-term data present in the papers selected for the analy-
sis. In temperate lakes, low TN:TP and stable water con-
ditions have been shown to lead to the dominance of both
nitrogen and non-nitrogen-fixing cyanobacteria (Smith et
al., 1983). However, as noted by Paerl et al. (2001), TN:TP
ratios may have less of an effect when total nitrogen and
total phosphorous are not limiting, which seems to be the
case for most tropical lakes and reservoirs in the analysis.

Another factor that has been known to affect the dom-
inance of cyanobacterial bloom species is the type of
water body (Dokulil and Teubner, 2000). In temperate re-
gions, large shallow lakes such as Lake Taihu in China
are conducive to Microcystis blooms, while deeper, well-
mixed lakes in France are conducive to Cylindrospermop-
sis blooms, and deep, alpine lakes are favourable to
Planktothrix blooms (Dokulil and Teubner, 2000). There
were three main types of water bodies in the present meta-
data, natural lakes, artificial reservoirs, and ponds. There
was a significant difference in bloom genera between
lakes and reservoirs (Fig. 7, P-value=0.001*<0.05), with
Microcystis blooms found in more natural lakes than
reservoirs and Cylindrospermopsis blooms found in more
reservoirs than natural lakes, as indicated in Fig. 7 by the
clear separation between two ellipses. This could be due
to the difference in structure of tropical lakes and reser-
voirs. Natural lakes usually discharge surface water but
reservoirs can have outlets at different depths and thus,
this may affect the outflow of the water body (Ji, 2008).
Most reservoirs may encounter extreme fluctuations in

water level depending on water usage, while natural lakes
tend to have less extreme fluctuations in water level and
very little control of discharge depth (Ji, 2008). Greater
mixing and higher turbidity of the mixed layer in reser-
voirs and could lead to more Cylindrospermopsis blooms,
especially in times of drought (Bouvy et al., 2000). Stable
water conditions and limited changes in discharge depths
combined with high nutrients may lead to a higher occur-
rence of Microcystis blooms in natural lakes (Baldia et al.,
2003). However, it is important to note that the studies
used in this meta-analysis may not be representative of all
tropical lakes and reservoirs. The effect of ponds could
not be discerned in this analysis, as there was only one
pond out of the 48 water bodies selected. However, simi-
lar genera were present in this pond compared to the other
water body types.

Other factors such as light intensity and stratification of
the lakes were not taken into account for this meta-analysis
due to the lack of detailed information on light and temper-
ature profiles of the water bodies. Flushing of water bodies
was not analysed in this meta-analysis due to the lack of de-
tailed information for flushing rates of different water bod-
ies. Poste et al. (2013) showed that higher flushing rates of
Napolean Gulf in Lake Victoria had led to a lower biomass
of Microcystis compared to other less flushed sites such as
Lake George and Lake Saka in Uganda. However, the rate
of flushing and difference in biomass was not quantified and
thus, higher flushing in combination with other factors may
have caused the lower biomass of Microcystis. Jayatissa et
al. (2006) did note a decrease in cyanobacterial blooms in
Sri Lanka due to flushing and dilution of water after heavy
rains. However, this study noted that cell density of Micro-

Fig. 7. Non-metric multidimensional scaling of tropical
cyanobacterial blooms overlayed with ellipses indicating types
of water bodies (L, lakes; R, reservoirs; P-value=0.001;*<0.05). 
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cystis remained high even without scum formation through-
out the wet and dry seasons. Retention time was indicated
as an important variable in determining the biomass of
cyanobacteria in Funil Reservoir in Brazil (Soares et al.,
2012). In Barra Bonita reservoir, cyanobacterial biomass
was recorded during both short and long retention times and
in highly stratified and destratified conditions, indicating
that nutrient availability was more important than flushing
(Dellamano-Oliveira et al., 2008). Overall, flushing and re-
tention time of a tropical reservoir may be important in de-
termining biomass in the surface water, however, nutrients
may play a larger role in determining biomass growth in the
entire water body throughout the year.

Effects of nutrient levels on microcystin production 

Nitrogen concentration was found to be one of the more
important factors influencing tropical Microcystis bloom
formation (Fig. 6). Cyanobacterial blooms in tropical coun-
tries occurred over a wide range of N:P ratios. The N:P val-
ues found in tropical lakes with the highest microcystin
values appear to be similar to those in temperate lakes at
approximately 20 (Orihel et al., 2012) (Fig. 8). It was found
that as N:P (nitrate:phosphate) values increased, the level
of microcystins increased significantly (Spearman’s rank
correlation, ρ=0.746, P-value=0.002 <Pcrit 0.05) for micro-
cystin levels higher than 1 μg L–1 (R Core Team 2012) (Fig.
8). There are distinct geographical patterns present in the
level of N:P (nitrate:phosphate) and microcystins encoun-
tered in the tropics, with African blooms having lower mi-
crocystin values and N:P (nitrate:phosphate) ratios recorded
compared to blooms in Asia and Australia (Fig. 8). This
could be due to an artefact in the timing of the data collec-
tion (snapshot data vs long term data) and not purely due

to a lower N:P (nitrate:phosphate) ratio present in African
water bodies (Chia et al., 2009). However, it is important
to note that the data analysed were taken from studies that
documented microcystin concentration as well as nitrate
and phosphate levels. Some studies that documented high
microcystin concentrations (>3 μg L–1; Addico et al., 2006)
did not document nitrate or phosphate levels and thus could
not be taken into account for this analysis. Also, studies that
documented the presence of microcystins without quantifi-
cation could not be accounted for (Odokuma and Isirima,
2007; Haande et al., 2007).

However, it is important to note that the N:P
(nitrate:phosphate) ratio alone is not the only factor influ-
encing the level of microcystin production by cyanobacte-
ria. Different strains and species of microcystin-producing
cyanobacteria respond differently to individual changes in
concentrations of nitrogen and phosphorus (de Figueiredo
et al., 2004). The data on nutrient levels in tropical lakes
and reservoirs are also sparse and thus the relationship be-
tween N:P (nitrate:phosphate) ratios and microcystin pro-
duction in tropical countries cannot be fully explored.
Different species and strains of cyanobacteria can also have
differing levels of microcystin production based on other
factors such as temperature.

Effect of temperature on microcystin concentration

Increased temperatures in temperate countries can lead
to more toxic strains developing and outcompeting non-
toxic strains of Microcystis (Briand et al., 2008; Davis et al.,
2009). The higher gene copy of microcystin synthetase
genes (McyD) in Microcystis species at elevated tempera-
tures could mean increased toxicity of cyanobacterial
blooms under warmer conditions (Davis et al., 2009). How-
ever, this trend has yet to be found in tropical water bodies
and Spearman’s correlation analysis on the maximum tem-
peratures of water bodies and total microcystin concentra-
tion based on 11 papers and 17 water bodies, did not yield
significant results (ρ=0.318, P-value=0.229>Pcrit 0.05). Stud-
ies that did not document the maximum temperatures for in-
dividual water bodies were excluded and thus, there is a
certain bias in the results that could have led to this insignif-
icant effect of temperature. However, temperature ranges in
the tropics are within 1-8°C for each water body (Ahmed et
al., 2008; Wang et al., 2002; White et al., 2003; Kotut et al.,
2010) and this small increase in temperature, which was
within the optimum temperature range of Microcystis toxin
production (25-30°C, Van der Westhuizen and Eloff, 1985;
Kim et al., 2005), may not significantly affect toxicity.

Effect of microcystis biomass on microcystin
concentration

The concentration of cyanobacteria may also influence
microcystin levels. Studies in temperate, sub-tropical as

Fig. 8. Log maximum microcystin concentrations (μg L–1) at dif-
ferent N:P values in tropical lakes and reservoirs. Cyanobacterial
blooms with less than 1 μg L–1 of microcystin recorded were not
included in this analysis.
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well as tropical countries have found positive correlations
between the concentration of microcystin and the concen-
tration of cyanobacteria in blooms (Xu et al., 2008; Poste
et al., 2013). Our analysis across tropical American and
Asian regions also showed microcystins to significantly
increase (Spearman’s rank correlation, ρ=0.94, P-
value=0.017*<Pcrit 0.05) with increasing concentration of
Microcystis spp. (R Core Team, 2012) (Fig. 9). However,
this trend was clear only for toxin concentrations higher
than 1 μg L–1. Concentrations of blooms from tropical
American and Asian countries containing known toxic
strains of cyanobacteria can possibly be used to estimate
microcystin levels in areas where regular toxin testing is
unavailable or unaffordable. This correlation was not sig-
nificant for tropical African blooms (Spearman’s rank cor-
relation, ρ=0.373, P-value=0.153 >Pcrit 0.05), where
tropical African blooms had lower microcystin concen-
tration per cell concentration as compared to tropical
Asian and American blooms (Fig. 9). The lower micro-
cystin concentration per cell in African lakes was based

on a limited amount of studies and could be a result of the
infrequent sampling and short time periods sampled
(monthly for 1 year, Okello et al., 2010; monthly for 6
months, Poste et al., 2013). Data collected bimonthly and
over a longer period of time should be more indicative of
the trends. Also, Okello et al. (2011) found that there was
significant within site variation of microcystin production
per Microcystis cell for lakes in Uganda and that average
microcystin per cell was dependent on the proportion of
mcyB genotype of Microcystis more than direct cell
counts. However, this trend was not clear in other tropical
water bodies. Vasconselos et al. (2010) indicated that even
though mcyB was present in a Mexican lake sample, there
was zero microcystins detected and similarly, another lake
that had zero mcyB detected, had microcystins detected.
Thus, there is no clear indicator of microcystin content in
water bodies across the tropics but each water body
should have its own guideline for either mcyB genotypes
or Microcystis cells, depending on which factor has better
predictive power. The variation of microcystin production
by Microcystis has also been noted in temperate blooms
where time and location were important factors in deter-
mining microcystin production within a connected fresh-
water ecosystem (Sabart et al., 2010). Another important
note about this correlation analysis is that it was based on
a limited number of studies and water bodies and in order
to improve its applicability and context, more studies with
higher frequency of sampling over longer periods of time
should be added.

CONCLUSIONS

It is important to understand the prevailing patterns or
trends of toxic cyanobacterial blooms in the tropics as
these may differ from the more widely studied temperate
and subtropical regions. Across the tropics, the genus Mi-
crocystis was the most prevalent bloom-forming
cyanobacteria, followed by Cylindrospermopsis, with
fewer blooms formed by Anabaena and Planktothrix.
However, different tropical regions were also character-
ized by different bloom-forming species such as Cylin-
drospermopsis spp. being more prevalent in tropical
Australia and Brazil, and Microcystis spp. more so in
Asia, Africa and Central America. Microcystins were the
most frequently encountered toxins, while cylindrosper-
mopsins, anatoxins and saxitoxins were detected in fewer
water bodies in tropical areas.

Various studies showed that Cylindrospermopsis
blooms were more likely to occur in the dry season as
compared to the wet season in the tropics while Micro-
cystis blooms were found to bloom during the wet season
after heavy rain.

Based on our meta-analysis, increasing total nitrogen
levels were related to more Microcystis blooms and higher
maximum temperatures were associated with more Cylin-

Fig. 9. Log microcystin concentrations (μg L–1) plotted against
log cell abundance (cells L–1) for different cyanobacterial blooms
in the tropics. Cyanobacterial blooms with less than 1 μg L–1 of
microcystin recorded were not included in this analysis.
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drospermopsis blooms. Tropical lakes were significantly
associated with Microcystis blooms while tropical reser-
voirs were significantly associated with Cylindrospermop-
sis blooms. Microcystin levels from Microcystis blooms
were found to have a positive relationship with N:P (ni-
trate:phosphate) ratios across the tropics. Tropical African
blooms were found to have no significant correlation be-
tween microcystin concentration and cell concentration as
compared to Asian and American blooms, which showed
significant positive correlation between microcystin con-
centration and cell concentration. Concentrations of blooms
from tropical Asian and American countries containing
known toxic strains of cyanobacteria can possibly be used
to estimate microcystin levels in areas where regular toxin
testing is unavailable or unaffordable. Maximum tempera-
ture of tropical water bodies did not have a significant effect
on total microcystin concentrations, which may be due to
the warmer temperatures experienced being within the op-
timum temperature range for microcystin production.

Although, the results from our meta-analysis and cor-
relation analysis agree with the general literature on
cyanobacterial blooms, it is important to note that all the
analyses were based on small subsets of the total literature
found on tropical countries, and that there were many
water bodies without information that were not included.
There could also be possible bias of data due to low fre-
quency of sampling and short sampling duration in several
studies. Thus, more information about cyanobacterial
blooms in tropical countries is still needed to gain further
insights into their patterns of occurrence, toxin production
and causes of blooms.
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