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INTRODUCTION 

Food web ecology, which focuses on the transfer of 

energy from primary producers (e.g., phytoplankton, pe-

riphyton, and macrophyte) to higher trophic levels (e.g.,

zooplankton, zoobenthos, and fish), is fundamental for 

the understanding of the trophic dynamics of aquatic 

ecosystems (Burns et al., 2011). Trophic relationships

among these primary producers have been traditionally 

investigated by inspecting gut contents. However, this ap-

proach is limited in delineating the complete picture of 
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ABSTRACT

Food web studies rely heavily on the use of traditional gut content analysis or the fairly popular stable isotope analysis rather than 

fatty acid analysis (FAA) despite its straightforward process, and ability to identify and characterize more diverse trophic pathways. In 

this study, we employed fatty acid (FA) biomarkers as a preliminary attempt to trace and characterize trophic pathways in food webs of 

four tropical lakes of volcanic origin in Luzon Island, Philippines - three clustered maar lakes (Yambo, Pandin and Calibato) and a large 

caldera lake (Taal). These lakes have a long history of human disturbance but limited ecological data. Knowledge of basal food sources 

and existing trophic dynamics of organisms are generally non-existent. Particulate organic matter (POM), zooplankton, and fish species 

were collected in August 2019 from the study lakes as representative of three trophic guilds. Non-metric multidimensional scaling 

(NMDS) and principal component analysis (PCA) were conducted to analyse FA profiles and characterize trophic relationships between 

representative organisms. For the POM, within lakes comparison of taxon-specific FA profiles showed a significant difference between 

the surface and near bottom depths, with the former dominated by photoautorophs and the latter by chemotrophs, suggesting the ability 

of FAA to effectively delineate between micro-organisms. Between lakes comparison also showed significant difference between the 

caldera and maar lakes, with the latter containing higher com-

position of bacterial FA, reminiscent of the considerably smaller 

lakes’ response to the impact of unmitigated organic loadings 

from anthropogenic activities. Taken together with the primary 

consumers’ FA profiles, analysis confirmed the ability of FAA

to discriminate between FA profile sources. PCA explained 

>70% of the variance in the FA compositions for three trophic

guilds in the two deepest lakes, which delineated both zooplank-

ton and fish species food selectivity in each lake, alluding to

FAA’s capacity to characterize dietary reliance of various

species in an environment with numerous food sources. Al-

though certain limitations were encountered, such as the speci-

ficity of the sampling depths for POM, and the small sample

size of the representative species of the third trophic level, this

study demonstrated the effectiveness of FAA as a powerful eco-

logical tool for disentangling intricate lake food webs compris-

ing various food sources. Overall, this study provided baseline

information on basal food sources and trophic pathways of rep-

resentative organisms from four tropical lakes. Taken together,

FAA studies have wide application in understanding food webs, 

including anthropogenically-threatened lake ecosystems.
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aquatic food webs. This dietary analysis is less applicable 

to micro-organisms, even for some macro-organisms, and 

only takes a snapshot of their diets, making the assessment 

mainly qualitative (Traugott et al., 2013). To overcome

this weakness, biochemical, immunological, and stable 

isotope techniques have been developed and applied to 

food web studies (Napolitano, 1999). Among these ana-

lytical methods, the use of certain lipid species, specifi-

cally fatty acids (FAs), has attracted attention because its 

principle is simply underlain by standard metabolic 

processes (Napolitano, 1999). The utility of FAs as trophic 

biomarkers has been recognized and applied to studies 

that look at the distinct FA profiles of consumers, which 

result from their assimilated diets for a given time 

(Napolitano, 1999; Alfaro et al., 2006; Torres-Ruiz et al.,
2007; Fujibayashi et al., 2019).

FA profiles vary among species and taxonomic 

groups, making FAs effective biomarkers as they often 

produce taxon-specific FAs. These specific FA profiles, 

often incorporated unmodified into organisms through 

their diet, serve as sources of energy (Dalsgaard et al.,
2003) or are retained as structural components of cell 

membranes and other organelles (Burns et al., 2011).

These essential fatty acids (EFAs) are known to signifi-

cantly affect the nutrition, growth, reproduction, immune 

response, and adaptation of primary and secondary con-

sumers (Burns et al., 2011; Lau et al., 2012).

EFAs include polyunsaturated fatty acids (PUFAs) and 

highly unsaturated FAs, which are vital biomolecules that 

function as fundamental materials for the structural com-

ponents of cells, tissues, and organs and synthesis of other 

biologically active substances (Ander et al., 2003). Certain 

PUFAs cannot be synthesized by the consumer, so instead, 

they are assimilated from the consumption of organisms 

from lower trophic levels (Lau et al., 2012; Fujibayashi et 
al., 2018). For example, the PUFAs linoleic acid (LA;

18:2ω6) and α-linolenic acid (α-LIN: 18:3ω3) are produced 

in great amounts by green algae and cyanobacteria, and 

arachidonic acid (ARA; 20:4ω6) is produced by higher 

plant species and green algae. Eicosapentaenoic acid (EPA; 

20:5ω3) and docosahexaenoic acid (DHA; 22:6ω3) are 

prominent PUFAs produced by diatoms and dinoflagellates 

(Napolitano, 1999; Burns et al., 2011).

Furthermore, for aquatic ecosystems, FA profiles have 

been utilized in identifying microbes specific to a certain 

water column depth (Kenyon, 1972; Mancuso et al.,
1990). Epilimnetic particulate organic matter (POM) is 

composed of diverse obligately photoautotrophic algae 

and heterotrophic bacteria (Raven and Maberly, 2009), 

while hypolimnetic POM is mainly composed of het-

erotrophic and chemotrophic bacteria (Newton et al.,
2011; Kurt, 2019). Based on POM FA depth profiles, 

Mancuso et al. (1990) observed a vertical shift in the dom-

inant taxa of microbial communities from PUFA-produc-

ing microeukaryotes in shallow layers to sulfur-reducing 

bacteria (i.e., 10Me16:0) in deeper layers.

Among the chemotrophs, methane oxidizing bacteria 

(MOB) play an important role in lake food webs as an al-

ternative carbon source for consumers through the biofil-

tration of dissolved methane generated from lake bottoms 

(Deines and Fink, 2011; Jones and Grey, 2011; Sansev-

erino et al., 2012). MOB subsidize zooplankton produc-

tion in oligotrophic to mesotrophic lakes (Bastviken et al.,
2004; Kankaala et al., 2010; Ho et al., 2016) and some-

times provide the dominant carbon pathway for zooplank-

ton during unproductive seasons (Taipale et al., 2007).

The MOB are divided into three major taxa, Type I, Type 

II, and NC10, which are differently distributed both ver-

tically and geographically (Kobayashi et al., 2016;

Ghashghavi et al., 2019). Since they produce taxon-spe-

cific FAs based on different metabolic pathways for the 

assimilation of formaldehyde (Hanson and Hanson, 

1996), these specific FAs can be used as tracers for 

aquatic consumers’ methane-derived trophic pathways 

(Sanseverino et al., 2012).

Taken together, taxon-specific FA profiles can be used 

as biomarkers of basal food sources for aquatic consumers 

(Tab. 1). LA and α-LIN serve as biomarkers for algae and 

cyanobacteria together with ARA, while EPA and DHA 

serve as biomarkers for diatoms and dinoflagellates, re-

Tab. 1. Fatty acid biomarkers for basal taxa. 

Taxa Fatty acid biomarker 

Green algae and cyanobacteria 18:3ω3 (α-LIN), 18:3ω6 (GLA), 18:2ω6c (LA) 

Diatoms 20:5ω3 (EPA) 

Dinoflagellates 22:6ω3 (DHA) 

Terrestrial plants SAFAs 24:0–31:0 

MOB Type I 16:1ω5t, 16:1ω7t, 16:1ω8, 16:1ω5c 

MOB Type II 18:1ω8 

Bacteria (all other) i-15:0, a-15:0, i-16:0, i17, a-17:0,18:1ω7

α-LIN, α-linolenic acid; GLA, gamma-linolenic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; SAFAs, saturated 
fatty acids; MOB, methane oxidizing bacteria. Source: Burns et al. (2011), Fujibayashi et al. (2019), Itoh et al. (2017), Napolitano (1999).

Non
-co

mmerc
ial

 us
e o

nly



Identification of aquatic consumer trophic pathways in four volcanic tropical lakes using fatty acid biomarkers 141

spectively. Most very-long chain saturated fatty acids 

(SAFAs; ≥25 carbon atoms) are terrestrial plants biomark-

ers, while short-chain SAFAs and mono-unsaturated FAs 

with ≤19 carbons (i.e., 16:1n7t and 18:1ω7) are bacterial

biomarkers (Napolitano, 1999). Due to the inability of 

aquatic consumers to synthesize EFAs, FA profiles serve 

as natural tracers that can be used to understand trophic 

ecology and the physiology of consumer species (Lau et 
al., 2012). In aquatic food webs, zooplankton have long

been regarded as a pivotal ecological link between pri-

mary producers and predators, and studies have shown 

that zooplankton naturally acquire FAs through diet 

(Burns et al., 2011). Generally, herbivorous zooplankton

contain more saturated FAs than PUFAs and assimilate 

ω3-FA derived from phytoplankton more efficiently than 

carnivorous zooplankton (Brett et al., 2009; Ravet et al.,
2010). Persson and Vrede (2006) indicated that copepods, 

in particular, tend to accumulate EPA and DHA. EPA, 

along with ARA, serve as precursors for prostaglandins, 

which in turn regulate molting and reproduction and 

maintain cell membrane functions, while DHA facilitates 

neural tissue development (Simopoulos, 2002). Among 

copepod species, calanoids have a moderate preference 

for DHA, while cladocerans prefer to assimilate EPA. The 

assimilation of PUFAs by zooplankton may temporally 

vary due to seasonal successions of phytoplankton com-

munities (Hartwich et al., 2013) and abiotic effects on ses-

ton PUFA concentrations (Thompson et al., 1990).

For lake fish, some FAs, such as DHA, EPA, and 

ARA, can only be assimilated from microbes and zoo-

plankton (Lau et al., 2012). DHA and EPA can also be ob-

tained by converting α-LIN from seston; however, this 

pathway may be inefficient and energy costly compared 

to direct consumption via food sources (Lau et al., 2012).

Considering consumer reliance on basal taxa-specific 

FAs, fatty acid analysis (FAA) is a more powerful tool for 

identifying diverse consumer trophic pathways in intricate 

lake food webs than stable isotope analysis, which can 

only identify two major trophic pathways derived from 

planktonic and benthic algae (France, 1995). Taking ad-

vantage of FAA, we attempted to characterize trophic 

pathways in tropical lake food webs in the Philippines 

where ecological data are very limited. Four tropical lakes 

of volcanic origin on Luzon Island were selected: three of 

the Seven Maar Lakes (SMLs); Lakes Yambo, Pandin, 

and Calibato; and a large caldera lake, Lake Taal. These 

lakes are of great importance to communities around the 

lakes’ perimeter as they are utilized for various economi-

cally important activities (Tab. 2) (Mendoza et al., 2019a,

2019b). First, we made a within- and between lake com-

parison of basal food sources based on the FA profiles of 

surface and near bottom POM using non-metric multidi-

mensional scaling (NMDS). We then performed principal 

component analysis (PCA) for the FA profiles of the three 

trophic guilds, POM, zooplankton, and fish, to examine 

zooplankton food selectivity and characterize trophic 

pathways for fish species in the deepest two of the four 

lakes. Finally, we discuss the characteristics and unique-

ness of tropical lake food webs in developing countries 

under anthropogenic disturbance. 

METHODS 

Study lakes 

Samples were collected from four tropical southern 

Luzon Island lakes during August 2019: three of the seven 

maar lakes (SMLs) in Laguna province, namely Lakes 

Yambo, Pandin, and Calibato, and a large caldera lake, 

Lake Taal in Batangas province (Fig. 1). Lake Taal was 

formed by the explosion of Taal Volcano (Papa and Ma-

maril Sr., 2011), and the SMLs were formed by the ex-

plosion of Mount Cristobal (Brillo, 2016a). Two of the 

SMLs, Lakes Yambo and Pandin, are referred to as twin 

lakes due to their proximity to each other, and unlike 

Lakes Calibato and Taal, these twin lakes are not heavily 

used for aquaculture but are popular tourist destinations 

(Brillo, 2016b). Lake Calibato, the deepest of the SMLs 

(Tab. 2), is used for fisheries and aquaculture, the main 

source of the local community’s livelihood (Brillo, 

2016a), while Lake Taal, the third largest lake in the 

Philippines, has multiple resource uses, including tourism, 

recreation, and aquaculture and fisheries essential to the 

local community. Due to their economic importance, these 

Tab. 2. Physical characteristics of the four study lakes. Based on De Leon et al. (2022) and Mendoza et al. (2019a).

Lake Yambo Pandin Calibato Taal 

Maximum depth (m) 27.60 61.75 156.00 198.00 

Surface area (km2) 0.31 0.24 0.43 268.00 

Elevation (m asl) 160 160 1706 2.5 

Trophic condition E E E M-E

Settlement population 2,000 8,500 8,500 286,358 

Usage T T F, T F, T, N 

E, eutrophic; M, mesotrophic; T, tourism; F, fishery; N, navigation.
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lakes have been at the center of lake ecosystem manage-

ment programs to mitigate human disturbances (Mendoza 

et al., 2019a, 2019b). According to the Philippine Fish-

eries Code (Republic Act 8550), only 10% of the total lake 

surface area (SA) can be occupied by fish cages. The twin 

lakes have the lowest fish cage to SA ratio among the 

SMLs with Lake Yambo having 2.07% of its total SA oc-

cupied by fish cages, while Lake Pandin only has 1.80% 

(Mendoza et al., 2019a). Unfortunately, this was greatly 

exceeded by Lake Calibato, with 22.36% of its SA occu-

pied by fish cages (Mendoza et al., 2019a). On the other 

hand, an ordinance of the Philippines’ Department of 

Agriculture stipulated that Lake Taal is only allowed to 

have 6,000 units of fish cages. This standard was eventu-

ally met by 2011 after conducting a significant 38.09% 

reduction of fish cages (Mendoza et al., 2019b).  
 

Sample collection and processing 

Three types of samples were collected to represent the 

three trophic levels to be analyzed, namely: water samples 

for POM, zooplankton, and fish samples. POM and Zoo-

plankton samples were collected at established sampling 

points through assessment of total lake area and maximum 

depth (Tab. 2). One sampling point was established for 

each of the SMLs (Yambo 14.118685 ºN, 121.367941 ºE; 

Pandin 14.11490 ºN, 121.36864 ºE; Calibato 14.10357 ºN, 

121.37732 ºE), while two points were selected for Lake 

Taal to represent its north (14.06586 ºN, 121.01919 ºE) 

and south (13.96746 ºN, 121.00947 ºE) basins (Fig. 1). 

Water samples (5 L) were collected from 5 m below the 

surface and 5 m above the lake bottom using a Niskin 

water sampler (General Oceanics). The water samples 

were filtered through a 5 μm mesh plankton net, then 

through a 0.7 μm GF/F filter (Whatman) precombusted at 

500°C in the laboratory with a filtration volume of 1 L/fil-

ter. A total of 5 filter papers per depth were then stored in 

corresponding vials and refrigerated. 

Collection of zooplankton samples was designed to 

target calanoid copepods. Coincidentally, the neotropical 

Arctodipatomus dorsalis (Marsh, 1907) is the only 

calanoid species in the SMLs and it is the dominating 

calanoid in Lake Taal (Papa et al., 2012; De Leon et al., 

Fig. 1. Map of the four southern Luzon Island, Philippines, study lakes showing the provinces they are located in. Lakes are numbered 

(1 = Yambo, 2 = Pandin, 3 = Calibato, 4 = Taal) based on maximum depth. Triangle markers indicate sampling points for each lake.
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2020). Samples were collected using conical 100 μm 

mesh plankton net towed vertically from near bottom to 

the surface at a constant speed. To ensure target species 

dominated sample aggregate, these were cleaned of debris 

and unwanted planktonic species by sieving through 94 

μm mesh aided by tweezers and a wash bottle filled with 

lake water. Resulting aggregates were stored in labelled 

falcon tubes. 

Wild-caught fish species were collected through op-

portunistic sampling by using gill nets set-up by fisher-

men. Samples were only caught in Lake Calibato and 

from the south basin of Lake Taal. Fish species collected 

from Lake Taal included Ambassis sp. (n=1), Sardinella 
tawilis (Herre, 1927) (n=4), and Oreochromis niloticus
(Linn.) (n=1), while Leiopotherapon plumbeus (Kner,

1864) (n=1) and O. niloticus (n=1) were collected from

Lake Calibato. Fish muscle tissue (~1-2 mg dry weight) 

was extracted by careful dissection of each specimen in 

fresh condition and then stored in vials. All three types of 

samples were quickly frozen at −20°C in a laboratory 

prior to FAA. 

Fatty acid analysis 

All frozen samples were subjected to lyophilization 

(Operon FDB-5502; Gyeonggi-do, Korea) for 24 hours at 

the University of Santo Tomas, Analytical Services Lab-

oratory. The freeze-dried samples were then transported 

frozen to Kyushu University, Fukuoka, Japan, for FAA 

following the slightly modified one-step method of Ab-

dulkadir and Tsuchiya (2008). 

An internal standard was prepared by dissolving 10 

mg of tricosanoic acid (23:0) to 100 mL of hexane. Zoo-

plankton and fish tissue samples were then finely ground 

and the surface of the GF/F samples that retained POM 

were peeled and used for further analysis. These samples 

were prepared for esterification; the samples were com-

bined with 2 mL of hexane and 1 mL of internal standard 

solution in a 10 mL centrifuge tube. Then, 0.8 mL of 14% 

BF3 in methanol was added and the tube was flushed with 

nitrogen gas and then tightly closed with a Teflon-lined 

screw-cap. The resulting solution was heated on a hot 

plate at 100°C for 120 min. Then, 0.5 mL of hexane was 

added followed by 1 mL of distilled water after cooling 

to room temperature. The solution was shaken vigorously 

for 1 min and centrifuged for 3 min at 2500 rpm. The 

upper phase of the resulting mixture, the hexane layer 

containing fatty acid methyl esters (FAMEs), was trans-

ferred into a clean sample vial for FAME analysis by gas 

chromatography-mass spectrometry (5977; Agilent). A 

100 × 0.25 mm i.d. capillary column (Supelco SP2560; 

Sigma-Aldrich) was used for the separation, with helium 

as the carrier gas. The initial column temperature of 70°C 

was elevated to 110°C at a rate of 10°C min−1. The tem-

perature was increased to 161°C at 1°C min−1, then further 

increased to 240°C at 5 °C min−1 and held for another 20 

min. The peaks of the FAMEs were identified by compar-

ison with the retention time of the standard and by the 

mass spectrum. 

Data analysis 

Data for the compositions of selected FA biomarkers 

(Tab. 1) in the POM collected from each lake (or each lake 

basin) at two depths were incorporated into non-metric 

multidimensional scaling (NMDS) to visualize between- 

and within-variations in the microbial community com-

positions based on ordination plots with the following fac-

tors: sampling site (lake), collection depth (surface vs near

bottom), and lake type (caldera vs maar). Stress values

were used in the assessment of the produced ordination 

plot, with stress value =/< 0.05 considered to be a good 

fit. Permutational multivariate analysis of variance (PER-

MANOVA) was performed to test for significant differ-

ences among the lakes and between the sampling depths 

based on goodness of fit. Data for the zooplankton sample 

FA biomarkers were then added to the ordination plot in 

the NMDS to visualize food selectivity from available 

food sources and between- and within-variations in the 

FA profiles. Significant differences were tested using 

PERMANOVA. 

In the two deepest lakes, Lakes Taal and Calibato, in 

which POM, zooplankton, and fish species were collected 

as representative of three trophic guilds, principal com-

ponent analysis (PCA) was performed to visualize the 

trophic pathways of each consumer in the lake food webs, 

with FA biomarker composition data as vectors. All the 

data analyses were carried out using R (R Core Team, 

2013), the vegan (Oksanen et al., 2020) and ggplot2

(Wickham, 2016) packages. 

RESULTS 

Fatty acid profiles 

All the FAs detected in the samples from the represen-

tative trophic guilds are shown in Tab. S1. Taxon-specific 

FA compositions are summarized in Tab. 3, based on iden-

tification shown in Tab. 1. For POM as a basal food 

source, bacteria-specific FA was the most abundant in all 

the lakes followed by green algae/cyanobacteria-specific 

FA. Dinoflagellate-specific FA was not detected in either 

the surface or near bottom samples from all the lakes. For 

the three SMLs, Type I MOB was common in both the 

surface and near bottom samples, whereas Type II-spe-

cific FA was only detected in near bottom samples. In con-

trast, no MOB was detected in either the surface or near 

bottom samples from Lake Taal. 

Using NMDS analysis, the POM in the surface and near 

bottom samples from the four lakes was plotted based on 
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the similarity of the FA biomarker compositions (Fig. 2). 

There was a significant difference in the FA biomarker 

compositions between lake types (PERMANOVA caldera 

vs. maar lakes, p=0.022) and sampling depths (surface vs. 

near bottom, p=0.034). Vectors with significant contribu-

tion to the ordination plot were cyanobacteria (r2 = 0.83, 

p=0.002), diatom (r2 = 0.83, p=0.002), bacteria (r2 = 0.96, 

p=0.001), and MOB Type II (r2 = 0.57, p=0.049). The 

cyanobacteria and diatoms, which are autotrophs, were ob-

served to be more related to the surface euphotic habitat, 

while the bacteria, which function as both chemotrophs and 

heterotrophs, were more related to the near bottom aphotic 

habitat (Fig. 2). The bacteria vector alone appeared to gen-

erate the dissimilarity of the POM FA biomarker composi-

tions between the caldera and maar lakes (Fig. 2). 

The zooplankton FA biomarkers from the four lakes 

showed that bacteria-specific FAs accounted on average 

for 17.80% of the total FA content. This was followed by 

green algae/cyanobacteria (6.60%) and diatom-specific 

FA (6.07%) (Tab. 3). Terrestrial plants and MOB-specific 

FAs constituted only a small part of the zooplankton FA 

content (<0.50%). Taken together with the POM as the 

available food sources, an ordination plot of the zooplank-

ton showed a distinct discrimination between trophic 

guilds (PERMANOVA zooplankton vs POM, p=0.001;

Fig. 3) but no significant variation among lakes (p=0.392), 

suggesting the conservatism of zooplankton FA composi-

tions compared to the wider variation in the POM FA 

compositions. The ordination plot indicated that zoo-

plankton had an increased proportion of cyanobacteria- 

(r2 = 0.78, p=0.001), dinoflagellate- (r2 = 0.58, p=0.006), 

and bacteria-specific FAs (r2 = 0.65, p=0.005) compared 

to the POM FAs (Fig. 3). 
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Fig. 2. Ordination plot (stress value = 0.013) with significant 

vectors to account for variations in the fatty acid biomarker com-

positions of particulate organic matter (POM) samples collected 

from Lakes Yambo, Pandin, Calibato, and Taal north (NB) and 

south (SB) basins.
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The FA biomarker compositions of the fish sampled 

from Lakes Taal and Calibato are summarized in Tab. 3. 

In general, fish samples had a higher proportion of di-

noflagellate- and bacteria-specific FAs and a minimal 

proportion of MOB-specific FAs. However, the compo-

sitions of the FA biomarkers varied greatly among the 

fish species in each lake. In Lake Taal, Ambassis sp. had 

a high proportion of dinoflagellate-specific FA (7.68%) 

and diatom-specific FA (6.21%). Within the same lake, 

coexisting S. tawilis relied heavily on bacteria (7.87%) 

and O. niloticus on dinoflagellates (3.51%) and green 

algae/cyanobacteria (3.38%). In Lake Calibato, L. 
plumbeus had the highest proportion of bacteria-specific 

FA (7.89%), similar to S. tawilis in Lake Taal. In con-

trast, coexisting O. niloticus had the highest proportion 

of dinoflagellate-specific FA (15.29%). 

 

Trophic pathways 

For Lakes Taal (south basin) and Calibato, the three 

trophic guild FA biomarker compositions were com-

pared: POM, zooplankton, and fish. For the Lake Taal 

food web, the PCA of the FA profiles explained 71.67% 

of the total variance, with eigenvalues of PC1 = 2.84 and 

PC2 = 1.45. A biplot of the PCA showed that both sur-

face and near bottom POM FA biomarkers were more 

associated with terrestrial plants, while zooplankton re-

lied on diatoms and bacteria (Fig. 4a). Among the fish 

species, the FA profile of Ambassis sp. was characterized 

by dinoflagellate- and Type I MOB-specific FAs. In con-

trast, the FA profiles of O. niloticus and S. tawilis were 

not characterized by specific FA biomarkers but were 

observed to be negatively related to cyanobacteria-spe-

cific FA. 

For the Lake Calibato food web (Fig. 4b), the PCA 

of the FA profiles explained 72.85% of the total vari-

ance, with eigenvalues of PC1 = 3.47 and PC2 = 1.63. 

Surface POM FA biomarkers were more associated with 

terrestrial plants, while those of near bottom POM were 

more associated with Type II MOB. Zooplankton FA 

profile was shown to be negatively associated with Type 

I MOB. Among the fish species, L. plumbeus had a FA 

profile similar to that of the zooplankton. In contrast, the 

FA profile of O. niloticus had a positive association with 

diatom- and dinoflagellate-specific FAs. When compar-

ing O. niloticus between these two lakes, the FA profiles 

were characterized by different basal food sources 

(Fig. 4 a,b). 

Fig. 3. Ordination plot (stress value = 0.040) with species vec-

tors for surface particulate organic matter (sPOM), near bottom 

particulate organic matter (bPOM), and zooplankton (zp) from 

Lakes Yambo, Pandin, Calibato, and Taal north (NB) and south 

(SB) basins.

Fig. 4. Biplot of particulate organic matter (POM), zooplankton, 

and fish collected from Lakes (a) Taal and (b) Calibato. Ore-
ochromis niloticus, Sardinella tawilis, Ambassis sp, and 

Leiopotherapon plumbeus. sPOM, surface particulate organic 

matter; bPOM, near bottom particulate organic matter; zp, zoo-

plankton.
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DISCUSSION 

Fatty acid analysis showed that the POM from the 

study’s tropical volcanic lakes was mainly composed of 

bacteria-specific FAs. Although bacterial production is ex-

pected to be low in the tropics due to constant high tem-

peratures, the dominating presence of bacteria in the 

study’s lakes may have been due to increased nutrient in-

puts, both anthropogenic or from terrestrial runoff. This 

has been shown to be the primary guiding factor for bac-

terial growth in similar environments (Scofield et al.,
2015; Freitas et al., 2017), and many studies have ac-

knowledged the critical role of bacterial communities in 

freshwater food webs (Newton et al., 2011). Based on our

results, near bottom POM was characterized more by bac-

teria- and Type II MOB-specific FAs, while surface POM 

was associated with cyanobacteria and diatoms (Fig. 2). 

Such a vertical pattern can be simply determined by the 

light environment: cyanobacteria and diatoms are com-

mon autotrophs in the euphotic layer (Falkowski, 1994), 

while bacteria are regarded as heterotrophs, active in both 

aphotic and euphotic layers (Newton et al., 2011).

In freshwater food webs, MOB serve not only as het-

erotrophs but also as chemotrophs and provide aquatic 

consumers with methane-derived carbon as an alternative 

food source (Kankaala et al., 2010; Sanseverino et al.,
2012). In temperate and boreal lakes, Type I MOB often 

dominate in the suboxic boundary layers of the hy-

polimnion due to their oxygen and anaerobically produced 

methane requirements (Sundh et al., 2005; Rissanen et al.,
2018). In contrast, the dominance of Type II MOB has 

been reported in many tropical and sub-tropical lakes 

(Dumestre et al., 2001). In the study’s tropical lakes how-

ever, Type I showed greater abundance in the surface than 

in the near bottom waters and was more abundant than the 

Type II, with vertical distribution limited to the near bot-

tom (Tab. 3). This was also in contrast to tropical and sub-

tropical lakes, in which Type II is widely distributed 

throughout the oxic layer (Zigah et al., 2015; Kobayashi

et al., 2016). Although MOBs are commonly present

through the whole water column (Lew and Glinska-Lew-

czuk, 2018), they have low methane oxidation activity in 

surface waters due to the inhibitory effect of strong light 

(Dumestre et al., 1999; Murase et al., 2005). In deeper

small maar lakes (i.e., the SMLs), since the near bottom 

layer is euxinic (Mendoza et al., 2021), it can retard

methane oxidation by aerobic MOB, such as Type I and 

II (Rahalkar et al., 2009; Schubert et al., 2010), suggest-

ing that their optimal growth condition may exist in the 

mid-depth suboxic layer, from which we did not collect 

any POM samples. A reason why the dominant group and 

vertical pattern of the MOB in our study were inconsistent 

with those of other lakes. 

A significant factor that generated the discrimination of 

the POM FA compositions between the caldera (Lake Taal) 

and maar lakes (Lakes Yambo, Pandin, and Calibato) was 

the relative abundance of bacteria, with the maar lakes hav-

ing higher concentrations of bacterial FA (Tab. 3 and Fig. 

2). Bacterial dominance in microbial communities can be 

determined by the availability of organic nutrients relative 

to inorganic nutrients (Jansson et al., 2006) and increased

phosphorus concentration (Coveney and Wetzel, 1992; Far-

jalla et al., 2009). Since the 1970s, the study’s lakes have

been heavily impacted by unregulated fish farming, with 

increased organic loads driven by fish pellet input (Papa 

and Mamaril Sr., 2011; Brillo, 2016a). In terms of the fish 

cage area relative to the lake surface area, the organic load 

was presumed to be heavier in the SMLs than the larger 

Lake Taal, resulting in more frequent fish kills due to 

anoxia in the former (Papa et al., 2011; Brillo, 2016a; Papa 

and Briones, 2017; Mendoza et al., 2019b). Although the

LLDA, a governmental agency for the environmental pro-

tection of Laguna Lake and its watershed, recently imple-

mented an ordinance to reduce the total area of fish cages 

in the SMLs, some of the lakes are still regarded as eu-

trophic (Mendoza et al., 2019a). In addition, Mendoza-Pas-

cual et al. (2021) recently updated the trophic status of three 

of the study lakes based on total phosphorus concentrations 

and classified them as eutrophic to hypereutrophic lakes. 

In contrast, in the Lake Taal food web, the POM FA com-

positions were characterized by terrestrial plants (Fig. 4). 

Since this lake has a considerably large catchment area 

(682.8 km2) and the land cover is dominated by forests and 

croplands, the lake basin can receive more allochthonous 

inputs from its watershed through river inflows and terres-

trial runoffs, as is often the case in lakes with less impacted 

catchments (Carpenter et al., 2005; Scofield et al., 2015).

In all the study’s lakes, zooplankton had the highest 

proportion of bacterial FAs (Tab. 3). The PCA revealed 

that the zooplankton preferentially assimilated bacteria-, 

cyanobacteria-, and dinoflagellate-specific FAs among the 

available POM food sources (Fig. 3). However, dinofla-

gellate-specific FA was not found in the POM from any 

of the lakes; nevertheless, this may have been an artefact 

of the sampling method. In this study, the POM was pre-

filtered through a 5 μm mesh plankton net to remove 

small zooplankton, such as nanoflagellates and ciliates. 

However, such pre-filtration also screens out large-cell 

phytoplankton. In Lake Taal, for example, the dinoflagel-

late Ceratium furcoides, which was observed to dominate

during the southwest monsoon, have a cell size ≥40 μm 

(Rott et al., 2008). The pre-filtration might have then ex-

cluded this otherwise dominant phytoplankton from the 

POM sample. Furthermore, in both the SMLs and Lake 

Taal, phytoplankton assemblages are often dominated by 

a colony-forming cyanobacteria Microcystis sp. (LLDA,

2008; Mercurio et al., 2016), which is a unicellular organ-

ism that forms large-size colonies, ranging from 300 to 
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1000 μm in diameter (Xiao et al. 2018). The proportions 

of FAs specific to large-size phytoplankton in the POM 

may have been underestimated, resulting in the positive 

food selectivity of the zooplankton for these taxa. 

In our study lakes, it has been reported that zooplank-

ton communities are dominated by a calanoid copepod, 

A. dorsalis, which has become a common species in 

Philippine inland waters (Papa et al., 2012; De Leon et 
al., 2020). A. dorsalis is known as a selective phytoplank-

ton grazer that prefers diatoms over cyanobacteria and 

green algae among phytoplankton assemblages (Cisneros 

et al., 1991). Its food preference accounts for the FA com-

position of the zooplankton collected from the less im-

pacted Lake Taal (Fig. 4a) but not the more impacted and 

eutrophic Lake Calibato (Fig. 4b). Although the zooplank-

ton in Lake Taal also strongly relies on bacterial FA, A. 
dorsalis, which is a raptorial feeder, has difficulty directly 

grazing on small bacteria. One potential trophic pathway 

to Lake Taal’s A. dorsalis population is the microbial loop, 

which occurs when bacteria and meso-zooplankton are 

trophically linked through bacterivorous micro-zooplank-

ton, such as heterotrophic nanoflagellates and ciliates 

(Nakano et al., 1998, 2001). However, this more detailed 

trophic pathway could have been traced should we con-

duct a FAA for size-fractionated 20-100 μm POM sam-

ples, which covers the size range of these suspected 

micro-zooplankton. 

In contrast, in Lake Calibato, the zooplankton showed 

no positive food selectivity to any basal food sources, but 

was observed to show a negative selectivity against Type 

I MOB, and terrestrial plants in the surface POM (Fig. 

4b). Although terrestrial-derived POM is regarded as dif-

ficult for aquatic consumers to assimilate, it can some-

times subsidize zooplankton in lake ecosystems (Pace et 
al., 2004). In the more impacted Lake Calibato, however, 

autotrophic and heterotrophic organic products boosted 

by anthropogenic nutrient loadings may be much more 

easily available to zooplankton. The availability of MOB 

may also be low because of their small cell size (<0.5-3.0 

μm; Bowman et al., 1994) without the intermediation of 

micro-zooplankton. 

The FA biomarker compositions of the wild-caught 

fish as predators showed great within- and between lake 

variations. Among the fish species in Lake Taal, Ambassis 

sp. selectively assimilated dinoflagellates and Type I 

MOB (Fig. 4a). This fish is widely distributed in shallow 

coastal waters in tropical and subtropical regions (Martin 

and Blabber, 1984), and is regarded as a predominant car-

nivore that feeds on planktonic crustaceans in coastal food 

webs (Martin and Blaber, 1983). It has also been reported 

that in Lake Taal, this species preys not only on copepods 

and cladocerans but also on chironomid larvae (Ari-

yaratne et al., 2008; Mendoza et al., 2015). Dinoflagel-

lates are the main prey item for most copepod and 

cladoceran species (Persson and Vrede, 2006), while the 

chironomids rely heavily on MOB (Eller et al., 2005; 

Jones et al., 2008). Considering that these microbes are 

too small to be directly grazed by Ambassis sp., its selec-

tive assimilation of their FAs can be explained by primary 

consumer-mediated trophic interactions rather than direct 

trophic interactions. 

The two other species from Lake Taal, S. tawilis and 

O. niloticus, did not show any positive selectivity for any 

FA biomarkers (Fig. 4a). However, S. tawilis, which in 

Lake Taal is an endemic freshwater sardine, has been re-

ported to be predominantly zooplanktivorous (Papa et al., 
2008), but our PCA did not support the assumption that 

the fish would rely on its main prey item, zooplankton 

(Fig. 4a). In the current study, the zooplankton samples 

were collected from the whole water column. Considering 

that S. tawilis had the highest proportion of bacteria-spe-

cific FAs, it might feed on zooplankton specific to the 

aphotic habitat where bacterial production is dominant. In 

contrast, O. niloticus is well known to have a wider range 

of food items, such as phytoplankton, zooplankton, in-

sects, and fish larva. It has also been reported to undergo 

temporal shifts in food habits in accordance to its on-

togeny and food availability (Zenebe et al., 1998; Nijiru 

et al., 2004; Rumisha and Nehemia, 2013; Mendoza et 
al., 2015). Such omnivory and food habit flexibility may 

be a cause of the dissociation with specific basal food 

sources. Rather, it should be noted that these fish showed 

negative selectivity against cyanobacteria. This pattern 

may be due to prey avoidance, as reported in a previous 

study in which O. niloticus was observed to detect and 

avoid toxic strains of Microcystis sp., the dominant phy-

toplankton species of Lake Taal (Mercurio et al., 2016), 

in an environment where other non-toxic food items were 

available (Beveridge et al., 1993). 

Unlike Lake Taal, O. niloticus from Lake Calibato 

showed a positive selectivity for diatoms and dinoflagel-

lates (Fig. 4b). O. niloticus is generally regarded as an om-

nivore, but it also behaves as an algal feeder (Getachew 

and Fernando, 1989; Dempster et al., 1993; Nijiru et al., 
2004). Using stable isotope analysis, Briones et al. (2016) 

showed that O. niloticus from Lake Sampaloc (one of the 

SMLs) relies strongly on periphyton compared to other 

fish species. It has also been reported that diatoms and di-

noflagellates are the main components of diet for O. 
niloticus (Rumisha and Nehemia, 2013), further support-

ing our analytical result. 

In contrast, L. plumbeus, which is endemic to Laguna 

Lake, had no selectivity to any basal food sources consid-

ered in the study, whereas it had the same vector as that of 

the zooplankton (Fig. 4b). This species is associated with 

rocky, vegetated lacustrine waters; the majority of its diet 

is composed of microcrustaceans, diatoms, and algae; and 

it is regarded as an omnivore (Delmendo, 1968; Quilang 
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et al., 2007; Corpuz et al., 2016; De Leon et al., 2017).

Kock et al. (2000), in contrast, reported that L. plumbeus
relies heavily on zooplankton, such as cladocerans and var-

ious species of copepods, making up to 50%–70% of its 

diet. The strong association with the zooplankton FA com-

positions suggested that L. plumbeus may act as zooplank-

tivores in the food web of Lake Calibato. 

CONCLUSIONS 

Taking advantage of FA biomarkers, we demonstrated 

that trophic pathways from basal to predatory species spa-

tially vary in tropical lakes. In particular, FAA coupled 

with NMDS or PCA was able to visualize how the com-

positions of basal species vary within and between lakes. 

Such spatial variations were, in turn, trophically translated 

to consumers, such as zooplankton and fish. Further, the 

FAA was also useful for detecting consumer food selec-

tivity, especially in cases where general patterns are not 

readily observed. The establishment of taxon-specific FA 

markers for other basal taxa whose metabolic pathways 

are unknown can increase the resolution of food web 

analysis. The capability of FAA to detect structural 

changes in food webs and identify their driving forces 

makes it a powerful tool for lake ecosystem management, 

particularly for highly-impacted systems. 
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