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ABSTRACT

A high frequency monitoring (HFM) system for the deep subalpine lakes Maggiore, Lugano and Como is under development within
the EU INTERREG project SIMILE. The HFM system is designed to i) describe often neglected but potentially relevant processes oc-
curring on short time scale; ii) become a cost-effective source of environmental data; and iii) strengthen the coordinated management
of water resources in the subalpine lake district. In this project framework, a first HFM station (LM1) consisting of a monitoring buoy
was placed in Lake Maggiore. LM1 represents a pilot experience within the project, aimed at providing the practical know-how needed
for the development of the whole HFM system. To increase replicability and transferability, LM1 was developed in-house, and conceived
as a low-cost modular system. LM1 is presently equipped with solar panels, a weather station, and sensors for water temperature, pH,
dissolved oxygen, conductivity, and chlorophyll-a. In this study, we describe the main features of LM1 (hardware and software) and
the adopted Quality Assurance/Quality Control (QA/QC) procedures. To this end, we provide examples from a test period, i.e., the first
9-months of functioning of LM1. A description of the software selected as data management software for the HFM system (IstSOS) is
also provided. Data gathered during the study period provided clear evidence that coupling HFM and discrete sampling for QA/QC
controls is necessary to produce accurate data and to detect and correct errors, mainly because of sensor fouling and calibration drift.
These results also provide essential information to develop further the HFM system and shared protocols adapted to the local environ-
mental (i.e., large subalpine lakes) and technical (expertise availability) context. The next challenge would be making HFM not only a
source of previously unaffordable information, but also a cost-effective tool for environmental monitoring.

indicators and physico-chemical and hydro-morphologi-

INTRODUCTION cal variables. The principal aim of the WFD is to protect

Monitoring the quality of surface waters is compul-
sory under current environmental policies, in particular in
Europe, under the EU Water Framework Directive (WFD;
European Commission, 2000). The WFD requires the
classification of the ecological status of surface waters
with an integrated approach based on several biological
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and enhance the status of aquatic ecosystems in the Eu-
ropean Union. Monitoring is a basic effort to assess the
present-day quality of European waters, describe their
evolution through time, and, ultimately, assess the effects
of the WFD and design mitigation options (Skeffington
et al., 2015).

Traditionally, monitoring freshwaters involves field
sampling and subsequent laboratory work. Samples are
collected manually from selected areas of the waterbody
and times of the year. This conventional approach pro-
vides essential information on the water quality and the
main ecological processes. However, this approach often
fails to capture the fast-paced dynamics of many biotic
and abiotic processes because of low sampling frequency
(Marcé et al., 2016). As an example, the conventional
monitoring of the trophic state of lakes based on micro-
scopic characterization of phytoplankton communities
and chlorophyll-a (Chl-a) extractions (Lorenzen, 1967,
IS0, 1992), due to its demanding field work and labora-
tory effort, is necessarily conducted at a low frequency
resolution. This kind of monitoring may be insufficient to
detect the short-lived, but significant changes in the phy-
toplankton communities, e.g., rapid turnover of phyto-
plankton species, cyanobacterial increases, and bloom
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formation (Hunter et al., 2009; Stumpf et al., 2012; Song
et al., 2012; Tran Khac et al., 2018).

In general, all the processes occurring over a temporal
scale shorter than the sampling frequency may go unno-
ticed in traditional monitoring programs (e.g., short-lived,
extreme episodic, or unpredictable events; Dubelaar ef al.,
2004; Banas et al., 2005; Itvanovics et al., 2005; Stock-
well et al., 2020). Both trophic state indicators, and single
limnological variables (e.g., temperature, pH, dissolved
oxygen) are indicative of lake water quality and may con-
tribute to identify conditions favourable to -or indicative
of- algal blooms development. For instance, summer heat
waves may promote blooms of harmful cyanobacteria and
other worrisome taxonomic shifts (Wagner and Adrian,
2009). Sudden changes in water temperature, conductivity
and dissolved oxygen can support the identification of up-
welling events due to internal sexes, mixing episodes, in-
trusion of river waters and the calculation of lake mixing
and stratification indices (Read ef al., 2011). Short term
changes in pH and dissolved oxygen may also help inves-
tigating inorganic carbon dynamics in lakes (Khan et al.,
2020). Further, high frequency limnological data, possibly
gathered at different locations within a lake, represent a
valuable resource for lake modelling (Laborde et al.,
2010; Pilotti et al., 2013).

Recent advances in sensor technology can overcome
the drawbacks of conventional monitoring, giving the op-
portunity to measure an increasing number of limnologi-
cal and ecological parameters at unprecedented short
temporal intervals and also during adverse meteorological
events (Banas et al., 2005; Johnson et al., 2007; Le Vu et
al.,2011; Jennings et al., 2012; Klug et al., 2012; Hamil-
ton et al., 2014; Meinson et al., 2016). Over the past
decade, there has been a drastic increase in the use of au-
tomated collection of high-frequency data in scientific re-
search and environmental monitoring (Horsburgh et al.,
2015). In addition, the installation of automated high fre-
quency monitoring (HFM) systems is often expected to
become a cost-effective monitoring tool, to cope with the
scarcity of specialized personnel for field and laboratory
work and to reduce the analytical costs (Le Vu ef al.,
2011). A great impulse to the development of HFM sys-
tems for European lakes came from the COST Action
NETLAKE (ES1201 - Networking Lake Observatories in
Europe) which prompted the establishment of a network
of scientists, technologists, managers, and stakeholders
focused on the application of sensor technology for lake
monitoring (Marcé et al., 2016). The cooperative network
GLEON (Global Lake Ecological Observatory Network)
also supports sharing and interpreting high resolution sen-
sor data from lakes worldwide (Weathers et al., 2013). An
increasing number of environmental authorities from all
around the world are integrating some HFM systems in
their monitoring programmes (Le Vu et al., 2011; Bertone

et al., 2018), also to improve provision of high-quality
freshwater, provision of food (aquaculture) and recreation
(Marcé et al., 2016). A few examples from Italy include
the HFM network deployed in 18 Sardinian reservoirs
used to identify the optimal depth for water withdrawal
and to early detect the development of algal blooms
(Marcé et al., 2016); a monitoring system which has been
developed in Lake Iseo, measuring the main thermal, ra-
diative, and mechanical fluxes on the lake surface (Pilotti
et al.,2013); and a high-frequency monitoring of meteor-
ological parameters and water temperature at different lo-
cations in Lake Como as input to a three-dimensional
hydrodynamic model (Laborde et al., 2010).

The implementation of a HFM system is also pro-
jected for the lakes of the so-called Insubric region (lakes
Maggiore, Como, and Lugano) and will be developed
within the cross-border cooperation project SIMILE (Ital-
ian acronym for “Integrated monitoring system for knowl-
edge, protection and valorisation of the subalpine lakes
and their ecosystems”). While the general aim of SIMILE
is to improve and optimize lake monitoring integrating
conventional monitoring, satellite data, in situ HFM data,
and user-contributed georeferenced data (Brovelli et al.,
2020), specific aim of the HFM system is to make avail-
able high frequency data of basic limnological and mete-
orological parameters in order to provide information on
lake processes occurring over a short time scale, such as
algal blooms, or weather-related episodic events.

The HFM station LM1 was the first station developed
within SIMILE (Fig. 1). In this project framework, LM1
represents a pilot experience, aimed at providing the prac-
tical know-how needed for the creation of the larger HFM
system projected in SIMILE. To enable the replicability
and transferability of this first experience, LM1 was con-
ceived as a low-cost modular system. Indeed, although
full-equipped systems for HFM of water bodies are com-
mercially available, their long-term maintenance may be
difficult because the understanding of the hardware and
software components is often not an easy process. There-
fore, an increasing number of research groups are devel-
oping their own modular system independently
(Albaladejo et al., 2012; Tran Khac ef al., 2018; Vitale et
al., 2018): in-house development provides the flexibility
needed to recover the system when malfunctioning or
damages occur (Vitale ef al., 2018) and to tweak its con-
figuration to monitoring needs.

In this paper, we describe LM1 (software and hard-
ware components, i.e., sensors, electronic devices, power
supply and transmission systems), providing an example
of a cost-effective and modular limnological buoy for
HFM. In addition, we used the first nine months of HFM
data to provide examples of: 1) field validation of sensor
data, comparing sensor readings with in sifu (multipara-
meter probe) and laboratory measurements; ii) the most
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common source of errors in sensor data; and iii) the
adopted Quality Assurance and Quality Control proce-
dures. This study mainly aimed at developing a sound pro-
tocol for HFM data collection, quality check, data
transmission, and storage within the SIMILE project. For
this reason, we have focused on the approach adopted to
get affordable HFM data, while the data analysis will be
the subject of a later study within the SIMILE project
once the whole data flow procedure will be established.
The information provided by our study can be used in
HFM monitoring of lakes to get affordable data, to be in-
tegrated into institutional monitoring programs of envi-
ronmental agencies and research institutes.

LAKE MAGGIORE, ITS MONITORING HISTORY
AND LONG-TERM DYNAMICS

Lake Maggiore is a large (surface area 213 km?; vol-
ume 38.1 km?) and deep (370 m) subalpine lake located
between Northern Italy and Southern Switzerland (Fig.
1). Its watershed (6,600 km?) is shared almost equally be-
tween the two countries while most of lake surface
(~80%) lies in Italy. Lake Maggiore has 33 inflows - main
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inflows are the Ticino and Toce Rivers - and one outflow
(Ticino River). Its theoretical water renewal time is 4.20
years. Lake level is controlled by the Miorina Dam to or-
dinarily allow for a 0.5 m difference between summer and
winter periods (Fenocchi et al., 2017).

Lake Maggiore has been regularly monitored on a
monthly base since 1978 with the support of the Interna-
tional Commission for the Protection of Swiss-Italian Wa-
ters (CIPAIS; CNR-IRSA, 2019). Samples and measures
were taken at the deepest point of the lake (Ghiffa station;
45°58°30” N; 8°39°09” E). Since 2019, a second moni-
toring site in Pallanza (100 m depth) has been included in
the monitoring programme (Fig. 1). Monitoring at both
stations include 1) sampling for chemical and biological
analyses, and 2) a vertical profile of temperature through
a multiparameter probe (Idronaut CTD304). Sampling for
chemical analyses involves the collection of 12 water
samples along the water column at the Ghiffa station and
3 samples at the Pallanza station. Samples are routinely
analysed for the main chemical variables (pH, electrical
conductivity, alkalinity, major anions and cations, reactive
and total phosphorus, ammonium, total nitrogen, reactive
silica) at the water chemistry laboratory of the CNR Water
Research Institute (CNR-IRSA) in Verbania using stan-
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Fig. 1. LM1. a) Description of the main components of LM1, parts in red are projected, not yet present components. b) LM1 buoy. c)
Location of LM1 and of the long-term sampling stations (white dots) in Lake Maggiore.
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dard methods for freshwater samples (APHA, AWWA,
WEF 2012; APAT IRSA-CNR 2003). In addition, Chloro-
phyll-a concentrations are determined fluorometrically
(Fluoroprobe BBE Moldaenke) in an integrated sample
through the 0-20 m layer. Integrated phytoplankton sam-
ples for biovolume and density through the 0-20 m layer
are also collected (CNR- IRSA, 2019).

Because of its long monitoring history, Lake Maggiore
was included in the Long-Term Ecological Research Net-
work - LTER site “Southern Alpine Lakes” (LTER
_EU IT 008), also comprising lakes Orta, Como, Iseo,
and Garda. These lakes are located south of the Alps, in
one of the most densely populated and urbanized areas of
Europe. They represent a strategic water supply for agri-
culture, industry, fishing, and civil use and are an impor-
tant resource for recreation and tourism (Salmaso and
Mosello, 2010). Long-term trends in trophic state and
other chemical and biological variables of the deep sub-
alpine lakes have been assessed in a series of synoptic
studies (Salmaso and Mosello, 2010; Rogora ez al., 2018;
Salmaso et al., 2020).

According to long-term monitoring data, the most rel-
evant changes in Lake Maggiore include oligotrophication
and increased thermal stability. Lake Maggiore has un-
dergone oligotrophication since the 1980s due to reduced
external nutrient loads. The lake is presently oligo-
mesotrophic, with annual average total phosphorus con-
centration of 12-13 ug P L' (Rogora et al., 2018). Trends
of phytoplankton biomass and chlorophyll concentrations
confirmed the oligotrophication of the lake (Morabito et
al., 2012). After the last episode of complete mixing in
2005-2006 due to exceptionally cold and windy winter
conditions (Ambrosetti and Barbanti, 1999), a tendency
towards increasing stability of the water column and de-
creasing mixing depth has been reported as an effect of
climate warming (Rogora et al., 2018). The effects of cli-
mate change on Lake Maggiore have been extensively de-
scribed and involve both the hydrodynamic and thermal

features of the lake (Fenocchi et al., 2018) as well as its
trophic and oxygen status (Rogora et al., 2018) and vari-
ous biological compartments (Morabito et al., 2012, 2018;
Noges et al., 2017; Tanentzap et al., 2020). As regards
phytoplankton, while nutrient inputs were the main driv-
ers of its dynamics until the early 1990s, climatic factors
started to play an important role during the oligotrophi-
cation phase (Morabito et al., 2012).

Until present, monitoring of Lake Maggiore has been
based on the conventional sampling methods described
above (CNR-IRSA 2019; Rogora et al., 2018) and HFM
has been limited to meteorological and hydrological vari-
ables. However, recent evidence of the relevance of rapid
ecological changes and extreme meteorological events
prompted the idea that more frequent limnological data are
needed to describe and timely predict fast-paced processes
(Morabito et al., 2018), such as algal blooms in spring and
summer (Callieri et al., 2014; Tapolczai et al., 2015).

THE HFM SYSTEM

Hardware: the buoy, power supply, sensors,
and data transmission

LMI buoy is located in the Pallanza basin, at about 50
m from the shoreline (latitude N 45.92440°; longitude E
8.54774°; Fig. 1), anchored to three concrete blocks by
steel chains at a depth of about 40 m. Two 50-Watt solar
panels give electricity to a lead battery (50 A/h), which
supplies all the power needed by the HFM system includ-
ing the electronic control unit, the submerged sensors, the
meteorological station (model gmx501, Gill Instruments,
placed on the top of the buoy), the system for data trans-
mission and a security signal light.

At present, LM1 is equipped with sensors for water
temperature, pH, dissolved oxygen, conductivity, chloro-
phyll-a (Tab. 1). Sensors are held inside a stainless-steel
guard placed 2.5 meters beneath the lake surface; an ad-

Tab. 1. Characteristics of the sensors presently installed on the LM1 buoy in Lake Maggiore.

Temperature* PHEHT, C4E, OPTOD NTC (Negative Temperature 0-50°C 0.01+0.5°C
(Ponsel/Aqualabo) Coefficient) thermistors
pH/Redox PHEHT (Ponsel/Aqualabo) Combined electrode (pH/reference): 0-14 0.01+0.10

special glass, Ag/AgCl ref.,
gelled electrolyte (KCI)

Electrical conductivity CA4E (Ponsel/Aqualabo) Conductivity sensor with 0-200 uS cm™ 0.01£2.00 pS cm™
4 electrodes (2 graphic, 2 platinum) at 25°C
Dissolved oxygen OPTOD (Ponsel/Aqualabo) Optical measure with luminescence 0-20 mg L' 0.01£0.10 mg L™!
(0-200%)
Chlorophyll-a Cyclops-7 (Turner design) Fluorescence 0-50 pg L! <0.008+0.030 pg L'

*A NTC thermistor is included in each of the Ponsel sensor (for pH, conductivity, and dissolved oxygen). In our evaluation period we refer to these
temperature sensors. We plan to add a thermistor chain with PT100 (Platinum resistance thermometers) to the buoy (Fig. 1).
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ditive sensor for chlorophyll-a concentration is placed at
a depth of about 8 m. Each sensor is wire connected to the
electronic control unit and waterproofed connectors. Fur-
ther sensors (for turbidity/TSS, phycocyanin and phyco-
erythrin, at 2.5 m depth; dissolved oxygen, at 30 m depth)
and a webcam have been added to LM1 in March 2021
(i.e., after the study period); a thermistor chain is planned
to be added during the project.

The electronic control unit is protected by a waterproof
box inside the buoy and is accessible from outside the buoy
by lifting a lid. The electronic control unit has been specif-
ically designed for signal acquisition from the sensors, data
storage, basic data elaboration and wireless transfer. The
electronic motherboard includes a power supply board, a
Beagle Back CPU board (Processor: AM335x 1GHz
ARM® Cortex-AR), serial boards for sensor data acquisi-
tion, high-resolution input boards ADC, and boards for
wireless communication and solar panel management.

Software: two tiers’ data storage using IstSOS

The CPU board support a Linux system allowing the
following tasks:
* Local data storage (on USB support);
* Real/near real time data transfer through Ethernet,
3G/GPRS modem or radio;
» Elaboration/aggregation of local data and transfer of,
e.g., daily report;
* Remote reconfiguration and software update.
During the test period (December 2019-September
2020), raw data were stored in daily csv files at 1 min fre-
quency and transmitted via wireless connection to the

Server Services - | Data Management

CNR-IRSA server. These data were used to assess differ-
ent aspects of the system functioning (e.g., sensor calibra-
tion, remote and field controls, problems related to sensor
drift and fouling), and how to manage them. Furtherly,
data gathered during the test period were used to test
Quality Assurance/Quality Control (QA/QC) procedures
to be successively adopted in the whole HFM system. In
particular, data quality issues will be implemented in Ist-
SOS, the open-source data management software selected
for the HFM system (Fig. 2). IstSOS was selected due to
its specific features specialized in hydro-climate data
management (Pozzoni et al., 2020; Strigaro et al., 2019).
IstSOS is a python implementation of the Sensor Obser-
vation Service standard (SOS) from the Open Geospatial
Consortium (OGC), which defines a web service interface
to register and retrieve metadata and observations of sen-
sors using a standard protocols and formats, in order to
increase the data consistency and interoperability. Among
the numerous features of IstSOS (Cannata ef al., 2015),
native support of data quality management is one of the
most important for this application since it allows to de-
velop data quality control procedures that associates ob-
servations with quality index (QI) that can be later used
to filter or properly weight observations in subsequent
elaborations. In IstSOS each registered observation is
strictly bonded to a code (QI) that identifies the latest
quality check test performed and successfully passed. The
tests will be divided into 4 main categories:

» Tests performed on raw data coming from the sensor;
*  Checks performed on aggregated data;

e Statistical tests on the time-series;

*  Human driven tests and the final ‘correct’ flag.

Data Editor

Data Viewer

Offering ?am;rary \_" |

Procedure:  [cHL_10 &2

ciLe HEEX
boapallanza:temporary
Fr:2021-03-17120:41:39, 8862522
To:2021-84-91713:33:32, 7112122

istsos:1.O'water.chlic
e
o

1846

Senics:  [Dowalona I | T [2e2tes 3] 0000 +0] To:{2021-04-0:|[B{on00]se] Property [water-Chiorophyllin-vivo [e[line 5] Je[cotted |2/ G

water-Chlorophyll-in-vivo
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Show CSV

Date CHL_10
2021-03-25T00:00:33.988841402:00 0,318
2021-03-25T00:01:34.036182402:00 0,308

2021-03-25T00:02:34.094713402:00  0.273

Open Source Software by Institule of Earth Science - SUPSI

Fig. 2. Web interface of the data viewer of IstSOS showing data flowing from LMI1.
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The quality check tests are performed consequentially
based on an increasing level of quality evaluation. The
IstSOS’s web interface allows to register new QC tests,
such as those proposed in this work. Thanks to the light-
weight of IstSOS and to the availability of a CPU support
and a Linux system, it will be possible to install IstSOS
directly on the monitoring buoys/platforms. It will act as
a local data storage system dedicated to collect and serve
raw data using standards and perform preliminary quality
checks directly at the node before data are transmitted to
the data warehouse. To this end, a standard communica-
tion between two IstSOS instances is enabled. The de-
scribed two tiers’ data storage approach is depicted in Fig.
3. The general data flow is divided into a tier at sensor
side (buoy) and a tier at server side (data centre). At the
buoy, data are collected from sensors and then checked
for range and step tests. After that, raw observations and
related QC codes are inserted into the IstSOS instance in-
stalled at the buoy. At a specific configurable time interval
(suggested between 10 and 30 mins), an algorithm re-
trieves raw data from IstSOS, performs quality checks,
aggregates and store resulting values with related quality
code back to IstSOS. At user-defined interval data are then
transmitted from the buoy to the data centre using selected
protocol (WiFi, LoRa, NBIoT, 4G) and SOS standard re-
quests to directly ingest them into the second tier IstSOS
instance. Instantly, ingested observations are accessible
for intensive processing such as for example the creation
of reports, additional data validation tests, the calculation
of indicators, scientific analysis, alert notifications, fore-
cast analysis and client interfaces creation. This approach
permits to locally store high frequency data and commu-

Daia
agaregated

Data
checked

inserted
into istS0S

nicate aggregated data at an adequate frequency for the
purpose of the monitoring. However, high-frequency data
are also transmitted at fixed intervals (daily in the case of
LM1 buoy) for raw data backup on a local server. This so-
lution reduces battery consumption, bandwidth usage and
transmission costs.

QUALITY ASSURANCE AND QUALITY
CONTROL PROCEDURES FOR SENSOR DATA

Background and definitions

Although HFM by sensor networks can provide many
benefits, sensors are susceptible to some inevitable levels
of failure, which can result in lost or poor-quality data
(Campbell et al., 2013). It may be therefore inappropriate
to make HFM data available to the public/users in their
raw form before checking them, or without having taken
care of the correct functioning of the entire HFM system.
Establishing proper QA/QC routines guarantees that
used/released data meet the expected quality standards
and, at the same time, provides data usage protection.
QA/QC procedures are adopted to minimize errors in data
streaming from the HFM system and to document the
overall quality of the data. QA and QC are closely related,
but they have distinct meanings: in our specific context:
we define 1) QA as the procedures taken to ensure that
the HFM system and its maintenance protocols are devel-
oped in a way to minimize data loss, sensor errors and the
need of subsequent corrective measures on data, and 2)
QC as the procedures to test whether streaming data meet
the expected quality standards including passing a series

Data flow at
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&
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] Analysis
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Fig. 3. Data flow from the monitoring system to server-side architecture.
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of semi-automated QC tests (see paragraph “QC proce-
dures”) and an expert-based inspection. QC procedures
are necessary to make sure that field data measurements
are right on (i.e., accurate), reproducible (precise; consis-
tent), and have a good estimate of their uncertainty. As-
sociate to proper QA protocols, QC is essential to produce
reliable data.

Errors in high frequency long-term datasets primarily
occur from sensor biofouling and calibration shift; but er-
rors may also occur for many other reasons (Wagner et
al., 2006). In Fig. 4 we provide some examples from LM 1
of the most common types of error in hydrological and
water quality sensor data:

» Skipped or no-data values when there are gaps in the
data (Fig. 4a).

» Sensor drift, occurring because electronic drift in sen-
sors reading away from the instrument’s calibration dur-
ing the period between calibrations (Fig. 4b). This may
also occur due to the aging of parts of the sensor, e.g.,
membrane aging or dye degradation in oxygen sensors.

Out of range values, when data values are beyond the
range of plausible values for the specific phenomenon
being measured (Fig. 4c¢).

Sensor fouling due to biological growth (biofouling;
Fig. 4d) or other residue build-up on the sensor be-
tween maintenance visits (i.e., sensor cleaning), which
can produce erroneous values and data truncation, i.e.,
when data values are recorded at the reporting limit
for a sensor because its maximum or minimum record-
ing level has been exceeded.

Failed sensor, that is an error occurring when sensor
fails (e.g., Chl-a sensor fails, and the system records a
value equal to 0; Fig. 4e).

Incorrect offset or calibration, when data values are in
error by a constant value.

Data value persistence, when data show constant val-
ues that are recorded when a sensor becomes stuck in
a single position or when a sensor fails and the data-
logger repeatedly records the last measured value.
Power failure, when the power supply fails to provide
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® Flagged values i In-situ QA measures

Non-flagged values m Laboratory QA measures

Fig. 4. Example of pre-processed data series from LM1 with i) data flags based on semi-automated quality control (see paragraph Semi-
automated QC controls), ii) results of in situ and laboratory quality assurance measures (see paragraph Is LM1 working well? Field
controls and periodic reporting), and iii) sensor cleaning dates (vertical grey lines). Red boxes highlight some common sources of error:
a. missing data can occur for electric supply and memory saturation issues; b. pH sensor underwent a drift, but it was recovered by re-
calibration in July 2020; c. pH values not complying with the local range criteria were flagged, but, in this case, they represent extreme
but accurate values, as shown by their good match with QA measures; d. fouling is a common source of error for Chl-a sensor and it
becomes clear if sensor values decrease abruptly after sensor cleaning; if data reach the reporting limits of the sensor, data truncation
can be observed; e. Chl-a sensor fails produced anomalous zero values.
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the required levels of power to a sensor resulting in

suspect measurements.

* Adverse site conditions, when conditions immediately
surrounding the sensor are not representative of the
site (e.g., sediment build-up in a sensor cup, ice build-
up around a sensor).

Since error accumulation can rapidly disrupt data se-
ries, producing reliable HFM data requires that such errors
are: 1) avoided, through appropriate QA procedures; ii)
identified, by correct QC procedures; and iii) eventually
corrected through interactive editing to mitigate for error
occurrence (Mourad and Bertrand-Krajewski, 2002). In
particular, QA and QC procedures are strictly intercon-
nected, because the identification of errors and function-
ing anomalies by QC procedures provide up to date
information to ensure the proper maintenance and func-
tioning of the system. Our QA/QC procedures include all
the calibration, performance verification, and mainte-
nance of LM1.

QA procedures
Sensor calibration in laboratory

Before installation, all the sensors underwent a labo-
ratory calibration. Calibration of pH, conductivity and
oxygen sensors were done according to the provision of
the manufacturers, using pH buffers and standard solu-
tions. The calibration of the chlorophyll sensors was per-
formed using dilution series of single-species cultures of
Chlorella sp. (Chlorophyta). We utilized two different
chlorophyll sensors, by the same manufacturer (Turner
Design), to assess whether their performance was similar
and hold common calibration coefficients. The phyto-
plankton culture was added to filtered lake water (What-
man glass fibre filters, GF/C with a nominal porosity of
ca. 1 um) using 12 litres black buckets, with non-reflec-
tive linear surface. Five algal dilutions were used, cover-
ing a Chl-a range of about 0-30 pg L'. During
measurements, Chl-a sensors were held 1 cm beneath the
surface of the sample and an automatic mixer used. Read-
ings were taken once the instruments had stabilized (after
ca. 10 s). The sensors were rinsed and dried thoroughly
between control (MilliQ water and filtered lake water) and
test samples measurements. Sensor fluorescence (F; in
Volt) were plotted against Chl-a concentrations ([Chl-a];
in pg L') obtained by spectrophotometric reading after
acetone extraction (APAT IRSA-CNR, 2003). The sensors
yielded a linear response up to the highest chlorophyll
concentration tested. However, performance of the two
chlorophyll sensors differed slightly, resulting in different
regression equations: [Chl-a 1] = 7.01 F - 0.3053, R? =
0.998; [Chl-a2]=11.421 F - 0.2078, R?=0.999. It is thus
evident that, when dealing with field fluorescent sensors,
each chlorophyll sensor needs to be calibrated individu-

ally. These regression equations were provisionally set to
convert sensor readings into Chl-a concentrations, subject
to confirmation by field validation.

Is LM1 working? Remote control

An operator oversees controlling that LM1 is working
and sending data properly on a daily basis. This procedure
greatly limits the possibility of losing data but does not
allow it to detect malfunctioning in real time. To over-
come this problem, we created an automated procedure
to query LM1 every 10 minutes and to send an email
alarm message in case HFM data is not received by the
server associated with LM1. Such alarm indicates that
wireless transmission failed and does not necessarily
imply the loss of sensor data. If the problem is limited to
the transmission system, data can be recovered from a
local memory placed on LM1 exactly to fix this eventual
problem. However, if transmission fails because power
supply problems or local memory saturation, data cannot
be recorded, and a timely intervention may save a lot of
data. This system allows us to intervene promptly, mini-
mize the loss of data, and detect functioning problems.

Is LM1 working well? Field controls
and periodic reporting

The correct functioning of LM1 was assessed by pe-
riodic field validations, to test the consistency between
sensor data and data from standard monitoring methods.
Tab. 2 provides the activity-log of the field surveys to the
LM1 buoy. Data from field and laboratory measurements
were compared with sensor data in order to i) check their
accuracy; ii) recalibrate sensors, when necessary; iii) cor-
rect sensor data when possible.

Field surveys were planned approximately on a bi-
monthly basis, unless urgent maintenance was required
(e.g., based on remote controls). However, to preserve one
of the main advantages of HFM (i.e., keeping monitoring
costs low), we tried to reduce the number of field surveys
when possible, e.g., in periods of low lake productivity
(winter), when biofouling was likely to be less severe and
frequent sensor cleaning unnecessary.

To check sensor data accuracy and get information for
subsequent field surveys planning, HFM data underwent
periodic reporting. A mechanism for periodic reporting is
an essential part of QA procedures (von Lehmde and Nel-
son, 1977). A weekly report was produced to provide an
easy visualization of the comparison between sensor data
and conventional monitoring data. Each weekly report is
a description of the dynamics of the HFM sensor data col-
lected over the previous two weeks (reporting period).
The core part of the reports is a comparison between sen-
sor data and QA data collected by conventional monitor-
ing methods (infrequent in situ observations and
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sampling, and laboratory analyses). Reports contain a
graphical representation of the recent dynamics of sensor
data and an assessment of sensor data quality based on
semi-automated QC procedures (see paragraph “Quality
controls”), their deviation from QA monitoring results,
and an expert opinion on the data quality and desirable
treatment for low-quality data (e.g., data correction or
deletion).

Data validation in the field

Once placed in the field, sensors should be checked
for calibration and, when necessary, re-calibrated. Accord-
ing to Wagner et al. (2006), field calibration is done by

Tab. 2. QA activity log for LM1 station in Lake Maggiore.

using calibration standards (i.e., solutions of known qual-
ity) during field visits. This procedure ensures that sensor
readings are correct and provides necessary data for re-
calibration. We periodically performed such calibration
checks to recalibrate the pH and conductivity sensors
(Tab. 1). For all the sensors, instead -or in addition to- cal-
ibration standards, we used field data obtained from in
situ and laboratory measurements (QA). This was done
because i) we were particularly interested in assessing the
performance of the sensors in the field and in comparing
them to the methods conventionally used in Lake Mag-
giore monitoring; ii) appropriate laboratory instrumenta-
tion was available at the CNR IRSA, such as Fluoroprobe
for Chl-a determination.

Date Time QA Procedures LM1 maintenance and functioning
Cleaning Measures

03/12/2019 12:00 Starting LM 1

18/12/2019 12:00 Electric interruption

24/12/2019 12:00 Electric problem fixed

09/01/2020 12:20 v v

16/01/2020 09:52 v

20/01/2020 12:00 v

27/01/2019 12:00 v

30/01/2020 08:37 v

06/02/2020 10:51 v

18/02/2020 10:18 v v

21/02/2020 14:37 v

04/03/2020 10:03 v

10/03/2020 10:22 v v

07/04/2020 11:30 v v

23/04/2020 11:47 v v

24/04/2020 12:53 v v

29/04/2020 11:44 v v Installation meteorological station

06/05/2020 11:40 v v

14/05/2020 09:27 v

20/05/2020 10:13 v v

27/05/2020 11:28 v

03/06/2020 10:37 v v

10/06/2020 09:50 v v

16/06/2020 08:53 v v

23/06/2020 09:19 v v

30/06/2020 10:17 v v

02/07/2020 07:50 Sensors removed for laboratory calibration

08/07/2020 08:07 v Sensors remitted

21/07/2020 11:39 v v

05/08/2020 09:15 v v

24/08/2020 10:50 v v In situ recalibration of chlorophyll sensor

31/08/2020 11:25 v v In situ test for chlorophyll sensor functioning
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Field measurements and laboratory analyses from
standard methods were used to check sensor accuracy
and, if needed, for sensor recalibration in the field. Water
temperature was measured iz situ by taking a vertical tem-
perature profile with a multiparameter probe (In-Situ
SmarTroll MP). A 0.5 L water sample was taken with a
Ruttner bottle at the sensor depth (2.5 m) for laboratory
determination of pH, conductivity and dissolved oxygen
(Winkler’s method). Additional 2.0 L water samples were
taken at the sensor depths (2.5 or 8 m; Fig. 1) for chloro-
phyll-a determination using two methods:

* fluorometric determination by FluoroProbe (BBE
Moldaenke, GmbH, Germany). Measures were done
with a Workstation benchtop unit, using a 25 ml cu-
vette of lake water samples;

» acetone extraction followed by spectrophotometric
reading (method APAT IRSA 9020; APAT IRSA-CNR
2003).

The accuracy of the temperature, pH, conductivity,
and dissolved oxygen sensors was assessed comparing re-
sults from in situ and laboratory QA measures with sensor
data, i.e., average of the last 30 measures after QA meas-
ure/sampling. For these sensors, we followed the calibra-
tion criteria of Wagner et al. (2006) to decide when sensor
recalibration was necessary. In such cases, calibration QA
measures were used as a reference to recalibrate the sen-
sors. However, we usually observed a good fit between
sensor and QA measures and limited calibration problems
and periodic recalibrations using calibration standards
were sufficient to maintain sensor data within the accept-
able accuracy limits (e.g., 0.3 mg L! for oxygen con-
centration); a clear sensor drift was however observed for
the pH sensor (Fig. 4b), needing sensor recalibration and
drift correction after about six months of sensor operation.
A possible problem related to the optical oxygen sensor
is dye degradation; however, during the nine -months op-
eration period, we did not observe any deviation in the
oxygen sensor readings.

Because Chl-a sensors were calibrated and tested in
laboratory conditions, their performance may differ in the
field with lake phytoplankton communities. In addition,
there are two very common factors which may affect the
linear relationship between fluorescence and Chl-a con-
centrations, producing significant deviations between
field and laboratory measures:

» the so-called fluorescence quenching (i.e., the depres-
sion of the fluorescence signal in surface waters dur-
ing daylight and especially at noon), which is a
ubiquitous phenomenon in lakes and oceans (Marra,
1997);

* phytoplankton community composition (Richardson
etal.,2010).

Both factors should be taken into account to recali-
brate the sensor for field measurements, i.e., find an ac-

curate conversion factor for raw sensor data (from Volts
to Chl-a concentrations).

Concerning quenching, this mechanism produces a
daily cycle in fluorescence data which is regarded as a
consequence of solar light photoinhibition on algal pho-
tosynthetic activity (McBride and Rose, 2018). As com-
monly reported in other HFM studies, we have observed
in our data the depressing effects of quenching on the flu-
orescence of Chl-a during midday hours. This pattern was
much attenuated at a greater depth (8 m; Fig. 5). In Fig.
5, it can be observed that around the time of sunrise (at
hour 6:00) chlorophyll-a values from night values of
about 1.0-1.5 Volt sharply declined to daylight values of
0.3-0.4 Volt, remaining at low levels until crepuscular
time (sunset at hour 20:15), when values gradually in-
creased again.

Neglecting quenching may have disruptive conse-
quences on the interpretation of chlorophyll-a data series;
we therefore considered the night surface measurements
as the most indicative of chlorophyll-a concentration, as
suggested in McBride and Rose (2018). To illustrate this
issue, we used the Chl-a data (in Volt) from the surface
sensor (2.5 m) and we calculated the average Chl-a con-
centrations in the 24 hours, or in the night immediately
following water sampling (using data from one hour
around midnight); we used only values recorded after
sampling because of possible biofouling events (Fig. 4d).
Whether the field calibration was performed using the
daily or night averages, this significantly changed the cal-
ibration parameters of the relationship between fluores-
cence (F; in Volt) and laboratory concentration ([Chl-a];
inpg L), ie, [Chl-a] = 11.52 F +0.42, R?=0.79 for the
daily averages; [Chl-a] =9.02 F + 0.22, R?=0.83 for the
night-time averages. The former equation does not ac-
count for quenching, having a higher slope and worse fit
of the latter. Interestingly, accounting for quenching also
provided a better concordance between the parameters of
the field calibration and the laboratory calibration, run
under controlled experimental conditions i.e., [Chl-a] =
7.01 F-0.31,R?=0.998 (see paragraph “Sensor calibra-
tion in laboratory”).

Concerning phytoplankton community composition,
sensor measures of chlorophyll-a by fluorometric determi-
nation may produce an underestimation of chlorophyll-a
concentrations when cyanobacteria are abundant (Bowling
etal., 2016), because chlorophyll-a fluorescence induction
works differently for cyanobacteria and eukaryotic algae
(Stirbet et al., 2019). We found a good agreement between
sensor data and chlorophyll-a concentrations measured by
laboratory extractions, likely because cyanobacteria have
usually a low biomass in Lake Maggiore (Fastner et al.,
2016), as confirmed by Fluoroprobe data (Fig. 6). Patterns
observed in the phytoplankton community over the study
period (December 2019 and September 2020; Fig. 6) have
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Fig. 5. Daily cycle of chlorophyll-a value recorded by the in-field CYCLOPS-7 sensors (surface sensor, at 2.5 m depth, and deep sensor,
at about 8.0 m depth) on sunny days in summer 2020. The readings of the deep sensor are steadily around 0.8 Volt.
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followed a dynamic typically observed in Lake Maggiore,
with a dominance of Bacillariophyta during spring and
early summer, and a more diverse community during sum-
mer including Chlorophyta and Cyanobacteria (Morabito
et al., 2012). In August 2020 a deviation between sensor
and laboratory chlorophyll data was observed and associ-
ated to an increase of phycoerythrin containing Cyanobac-
teria, detected and measured by the Fluoroprobe. The
increase of phycoerythrin might be due to picocyanobac-
teria (i.e., Synechococcus), since they usually became
abundant in late summer in Lake Maggiore (Callieri and
Piscia, 2002). This condition may suggest that sensor field
calibration and chlorophyll data interpretation in Lake
Maggiore require careful consideration because of its phy-
toplankton community composition during summer peri-
ods. Performing frequent field sampling and analysis of
the phytoplankton community composition could improve
the comparison with sensor chlorophyll data, at least dur-
ing the first phase of the HFM system running. Further,
the adoption of field sensors for the detection of phyco-
cyanin and phycoerythrin, as foreseen for the LM1 buoy,
may be crucial to disentangle the contribute of different
algal groups on the overall signal of the chlorophyll regis-
tered by the field sensor.

Sensor cleaning

Sensor fouling, in particular biofouling, is a major
source of errors in limnological HFM systems. Fouling
occurs because particulate matter, sediments, bacteria, mi-
croalgae or larger organisms adhere to the surface of the
sensors, of their supports and cables, with possible inter-
ferences with data quality. At some places and occasions,
sensors may face actual short-term biofouling effects, dis-
rupting the quality of the measurements, sometimes in
less than a week. Unless autonomous and effective anti-
fouling techniques are adopted, a regular manual cleaning
of the sensors is needed to assure the quality of the data.
However, this is likely to become the most laborious task
related to system maintenance (Laas et al., 2016).

For LM1, biofouling was a major issue for the sensor
for chlorophyll-a, requiring frequent field visits to the buoy
for sensor cleaning (Tab. 2). Even if fouling was observed
only for the chlorophyll sensor, all sensors were cleaned
with the same frequency required by the chlorophyll-a sen-
sor, which was probably sufficient to avoid any fouling
problems for the other sensors. The minimum time elapsed
between the last chlorophyll-a sensor cleaning and the re-
currence of the problem was less than two weeks, but
longer recurrence times were usually observed. Evidence
of fouling arises from the observation of the data series,
which show an abrupt decrease, just after sensor cleaning
(Fig. 4d). Until now, biofouling was addressed through
regular manual cleaning of the sensor surface and support
and by data correction. However, finding autonomous and

effective anti-fouling systems is probably a priority to re-
duce the maintenance efforts and preserve one of the most
attractive advantages of automated monitoring systems,
i.e., saving time and personnel costs.

Some techniques and technologies are available to re-
duce sensor fouling (Pires, 2010); they include using au-
tomated mechanical cleaning systems, antifouling paints
(with active biocides such as copper), and active systems
based on electro-mechanical vibration removing fouling
material from the surface. However, antifouling paints are
not adapted to protect sensors’ sensitive parts (the inter-
face between the measurement medium and the sensor
sensitive area), which should remain as much as possible
unmodified, and the power requirement of electro-me-
chanical methods may be too high for HFM systems. Up
to now, standard methods to avoid and manage sensor
fouling are not available. It is likely that biofouling may
become an even more pressing problem for meso-eu-
trophic lakes, such as lakes Como, Varese and Lugano.
An important step for the creation of an efficient HFM
system for the subalpine lakes is the creation of standard
antifouling protocols, which should be considered a pri-
ority for our project.

QC procedures
Semi-automated QC controls

Automated QC controls do not replace manual data
inspection by experts which is ultimately needed to take
the final decision on deletion or correction of erroneous
or low-quality data. However, automated QC represents
a necessary improvement. It ensures consistency, re-
duces human bias, and enables to cope with the huge
flow of data from HFM systems, which is incompatible
with manual QC methods historically used by ecologists
(Campbell et al., 2013). Automated QC control classifies
data according to mathematical or logical criteria. When
they do not meet such criteria, data are not removed, but
labelled (or flagged) as suspicious, preserving raw data
unmanipulated (i.e., pre-processed data). The final deci-
sion on retaining, correcting, or deleting flagged data is
taken at the final data editing. For example, extreme
events may produce extreme but accurate values which
may be flagged for falling outside a certain range crite-
rion (Fig. 4c¢).

Most automated quality control procedures are fo-
cused on flagging raw data values that do not meet one of
several plausibility tests (Sheldon, 2008; Lerner ef al.,
2011; Taylor and Loescher, 2013). Flagging erroneous or
suspicious values can require simple algorithms (e.g., sim-
ple range checks) or more complicated techniques
(Moatar et al., 2001; Hill et al., 2009; Fiebrich et al.,
2010). We provide an example of semi-automated QC
procedures based on the package sensorQC (Read ef al.,
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2015) of the R statistical environment version 4.3.1 (R

Development Core Team, 2019). This package was devel-

oped by the United States Geological Survey and specif-

ically designed for automated QC controls for sensor data

(Gries et al., 2014). Our semi-automated QC procedures

provide for four plausibility tests. A flag is generated and

associated to the data which do not meet the criteria (Tab.

3) of the following tests:

» global range test: data are flagged unless they fall
within valid regional lake ranges or instrumental limits
(whichever is more restrictive) (i.e., >MAXglobal and
<MINglobal, respectively representing the maximum
and minimum plausible values at a global level); we
set MAXglobal and MINglobal based on instrumental
limits and literature data;

» local range test: data are flagged unless they fall within
locally valid site-specific ranges (i.e., >MAXlocal and
<MINIlocal, respectively representing the maximum
and minimum plausible values at a site-specific level);
we set MAXlocal and MINlocal respectively equal to
the upper and lower 95% Confidence Intervals of the
surface values recorded during the long-term monitor-
ing campaign of Lake Maggiore at the Ghiffa sam-
pling station;

» stuck value test (or value persistence test): data are
flagged if neighbouring values differ by less than the
resolution of the sensor for more than Nrep repetitions,
where Nrep is an arbitrary number of repeated data
that is considered indicative of sensor stuck;

» spike test or absolute deviation around median test:
data are flagged when their absolute deviation around
the median value calculated over the last w previous
values is larger than 3 times their median (i.e., median
absolute deviation - MAD> 3).

Visual inspection of data and manual QC editing

Many sensor errors, such as sensor drift and fouling
may swell the automated procedures but become evident
when sensors undergo periodic maintenance operations
(i.e., cleaning) or sensor accuracy is tested, i.e., using cal-
ibration standards or field measures (see paragraph “Qual-

ity assurance”). Automated QC can identify and flag po-
tentially erroneous values. However, there is also a need
of choose and apply the appropriate data corrections
(Horsburgh et al., 2015). As stated above, to this aim, the
attention and expertise of field or data technicians are re-
quired (Fiebrich ef al., 2010). At this stage, flags can be
conveniently used to sort the data according to the criteria
for automated QC, which enables saving considerable
time. During the final editing, data undergo visual inspec-
tion. A readable graphic representation of HFM data as-
sociated to QA monitoring data (e.g., sensor cleaning
events, laboratory measurements, efc.; Fig. 4) is therefore
necessary.

In Tab. 4 we provide the logical scheme (i.e., articu-
lated in a series of dichotomous questions) that we used
for the final editing. It should be noted that at first data is
evaluated based on the results of automated QC controls
(flagged data), but then also non-flagged data are in-
spected. Final editing provides for one of three possible
actions: retain data (for data that are considered accurate
enough), discard data (when data quality is considered too
low and correction methods inapplicable), or correct (i.e.,
subtract/add a quantity to the raw sensor value). The final
decision is often based on data accuracy as compared to
QA measurements, so that QA measurements should be
frequent enough to enable such comparisons and provide
guarantees about the quality of HFM data. Sensor data are
retained without any manipulations when they match the
calibration standards or QA measures used to evaluate the
sensor accuracy. A certain deviation between sensor data
and QA measures is however expected, but data can be
retained without corrections if they meet fixed quality
standard (Tab.4).

More sophisticated methods are needed to correct for
1) calibration offset, ii) sensor drift, and iii) sensor fouling
(Wagner et al., 2006). Hereafter we describe some meth-
ods to correct data. Being aware that these methods are
not representative of the entire range of possible correc-
tion methods. However, a full description of these meth-
ods is out of the scopes of the present study. We just
provide some examples of data correction from our study
that can be applied in similar cases.

Tab. 3. Parameters of the semi-automated QC tests applied to the sensor data from the LM1 buoy.

pH 3 11 7.37 9.01 5 60 3
Temperature °C 0 50 6.60 23.00 5 60 3
Electrical conductivity at 25 °C ~ uS cm™ 0 2000 135.84 166.68 5 60 3
Oxygen concentration mg L' 0 20 9.17 12.28 5 60 3
Chlorophyll-a concentration pg L 0 34.43¢ 0.03 34.43: 3 60 3

“Upper instrument limit.
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Calibration offset occurs when sensor data deviate
from QA measurements by a constant; sensor data can be
corrected adding this constant and further errors avoided
through recalibration. To compensate for sensor drift, we
considered the difference, or deviation, between QA
measures and sensor data. Sensor data were estimated as
the mean value of the 60 measures (1 hour) taken starting

Tab. 4. Line of reasoning for the final HFM data editing.

from 10 mins after QA measures, to avoid values tem-
porarily affected by QA procedures. Even if sensor drift
may follow different patterns, we assumed it followed a
straight linear course with time. We therefore run a linear
regression between sensor deviation and time to correct
for sensor drift (Fig. 7a and a’).

Sensor fouling was observed only for chlorophyll-a

1. Are the values under inspection flagged according to at least one of the semi-automated Quality Control criteria?
Yes goto2
No go to 12
2. Are the values flagged according to the stuck value test?
YesNo goto3goto4
3. Does data inspection confirm sensor stuck?
Yes DISCARD
No goto 4
4. Are data values flagged according to the spike test?
Yes goto5
No goto 6
5. Is there a clear mechanism (ecological or physical) explaining the spikes?
Yes goto6
No DISCARD
6. Are data values flagged according to the global range test?
Yes goto7
No goto8
7. Are values at or outside instrumental limits?
Yes DISCARD
No goto 8
8. Are values flagged according to the local range test?
Yes goto9
No goto 11
9. Are values outside local range because of sensor drift or fouling?
Yes goto 10
No go to 11
10. Do sensor drift or fouling caused data truncation at the instrumental limits?
Yes (remove all data which can be affected by drift or fouling, also those data recorded before the instrumental limits DISCARD
were reached. Then, recalibrate or clean the sensors)
No (recalibrate or clean the sensors) CORRECT
11. The match between sensor data and calibration standards/available Quality Assurance (QA) measures is good enough?”
Yes RETAIN
No goto 12
12. Do values deviate from QA measures by a constant?
Yes CORRECT
No goto 13
13. Do values deviate from QA measures according to a recognizable pattern attributable to sensor drift or fouling?
Yes goto 10
No (sensor should be repaired or changed) DISCARD

*Temperature error less than £0.2°C; EC error less than £5 uS em™; [O,] error less than 0.3 mg L™'; pH error less than 0.3 pH units,; [Chl-a] error less
than 15% the values recorded the night after the QA measures. Temperature, EC, pH, and [O,] criteria are based on Wagner et al., 2006, the criterion

for [Chl-a] is based on personal observations of data accuracy.
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sensors, becoming evident after sensor cleaning (Fig. 2d).
The removal of fouling by sensor cleaning (fouling end
point) results in a shift of chlorophyll-a values, which pro-
vides a measure of maximum fouling, i.e., estimated as
the difference between the chlorophyll-a average values
12 hours before (ca. 720 points) and 12 hours (ca. 720
points) after cleaning. The onset of fouling was estimated
visually (i.e., the time Chl-a data appeared to begin drift-

a) 1o

deviation from
QA measures

ing upward). We assumed fouling to be linear, so the cor-
rection for fouling (the quantity to be subtracted from the
raw Chl-a data) is the linear interpolation between 0 at the
estimated onset of fouling and the maximum fouling at
the point of sensor cleaning (Fig. 7b).

Releasing raw or automatically corrected data from
HFM systems may provide inaccurate baseline data for
environmental management, scientific, sanitary, and com-
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munication purposes. This should be avoided by checking
the data before release or, when data are released in real-
or near-to-real-time, all the possible source of errors and
their effects on the flow of data should be clearly de-
scribed.

TOWARDS A HFM NETWORK FOR LAKES
IN THE INSUBRIC REGION

Newly available sensor technologies give the oppor-
tunity of monitoring lakes at unprecedented frequencies.
However, HFM systems entails some difficulties related
to the complex technology of sensors and to the manage-
ment of a huge amount of data. Depending on the local
context (i.e., expertise availability), creating a functional
HFM network may present several difficulties, essentially
related to the gap in the technical know-how. LM 1 should
be considered as a pilot experience to start filling this
knowledge gap. The first nine months of LM1 functioning
enabled us to test the advantages and shortcomings of
HFM and will provide the needed background to imple-
ment the rest of the HFM network in the Insubric lakes
Maggiore, Como and Lugano, none of which was previ-
ously subject to in situ real-time monitoring.

Based on this pilot experience, we highlight four
major issues for the development of an efficient HFM sys-
tem at a regional level:

Sensor data accuracy: positioning sensors and data ac-
quisition must be accompanied by shared QA/QC proce-
dures, to produce accurate data and provide reliable and
consistent information on lake water quality.

Value for money: frequent field surveys required for
sensor maintenance (e.g., cleaning) may undermine the
cost-effectiveness of HFM (Garel et al., 2009; Le Vu et
al.,2011). Reducing survey frequency is a major issue for
the implementation of a long-term HFM of Insubric lakes,
for example, developing shared methods to reduce foul-
ing.

Long-term sustainability: LM 1 hardware and software
underwent several changes (e.g., changing/adding elec-
tronic components, sensors, and data transmission proto-
cols) which have been possible because LM1 was
developed in-house, having full access to all the hardware
and software components. This also increased replicabil-
ity and transferability of our experience within and out-
side the SIMILE project.

Data access: making raw, real time HFM data avail-
able to the public/users before validation may be inappro-
priate, even when users are provided with an alerting
about possible error sources. Sound quality check and val-
idation protocols are essential to provide useful data to
the users. Within SIMILE the following strategy will be
adopted, in order to manage that data flow: data are auto-
matically checked in real-time for soundness and gross-

error detection and are stored in the local istSOS (on-
buoy) with an associated quality index. At specific time
intervals, data are aggregated and associated with a new
quality index resulting from a number of data checks, in-
cluding those tested in the present study (e.g., step test,
local and global range tests). Successively, aggregated and
quality checked data are transmitted using the selected
transmission protocol to the data-centre tier consisting of
several Web services dedicated to data collection, protec-
tion and serving.

The present study provides essential indication for the
installation of a HFM system and for a shared QA/QC
procedures to guarantee the good functioning of the sys-
tem itself and a wise management of HFM data. A shared
data validation protocol is still under development, based
on the results we gathered during this study. The final pro-
tocol should aim at reducing the validation time to facili-
tate public access to the data with controlled quality.
Currently, taking advantage of the experience gained with
LMI1, a mooring platform equipped with limnological
sensors has been installed in Lake Lugano, and three
buoys will be placed in different areas of Lake Como.
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