Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes

Mariano BRESCIANI,1,2 Claudia GIARDINO,1 Rosaria LAUCERI,2 Erica MATTA,1 Ilaria CAZZANIGA,1,3 Monica PINARDI,1 Andrea LAMI,2 Martina AUSTONI,2 Emanuela VIAGGIU,4 Roberta CONGESTRI,4 Giuseppe MORABITO2

1Optical Sensing Group, Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milan; 2Institute for the Study of Ecosystems, National Research Council of Italy, Largo Tonolli 50-52, 28922 Verbania-Pallanza; 3Remote Sensing of Environmental Dynamics Lab. DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan; 4Department of Biology, University of Rome Tor Vergata, Rome, Italy

*Corresponding author: bresciani.m@irea.cnr.it

ABSTRACT

Cyanobacterial blooms occur in many parts of the world as a result of entirely natural causes or human activity. Due to their negative effects on water resources, efforts are made to monitor cyanobacteria dynamics. This study discusses the contribution of remote sensing methods for mapping cyanobacterial blooms in lakes in northern Italy. Semi-empirical approaches were used to flag scum and cyanobacteria and spectral inversion of bio-optical models was adopted to retrieve chlorophyll-a (Chl-a) concentrations. Landsat-8 OLI data provided us both the spatial distribution of Chl-a concentrations in a small eutrophic lake and the patchy distribution of scum in Lake Como. ENVISAT MERIS time series collected from 2003 to 2011 enabled the identification of dates when cyanobacterial blooms affected water quality in three small meso-eutrophic lakes in the same region. On average, algal blooms occurred in the three lakes for about 5 days a year, typically in late summer and early autumn. A suite of hyperspectral sensors on air- and space-borne platforms was used to map Chl-a concentrations in the productive waters of the Mantua lakes, finding values in the range of 20 to 100 mg m\(^{-3}\). The present findings were obtained by applying state of the art of methods applied to remote sensing data. Further research will focus on improving the accuracy of cyanobacteria mapping and adapting the algorithms to the new-generation of satellite sensors.

Key word: Remote Sensing; monitoring; chlorophyll-a; lakes; hyperspectral.

INTRODUCTION

In the past two centuries, human activity has altered the global climate to such an extent that this historical period has been called the Anthropocene (Steffen et al., 2007). The effects of climate change are threatening not only water safety and accessibility but also the quality of aquatic ecosystems, leading to loss of biodiversity (Bálint et al., 2011; Harley, 2011), altered of reproductive cycles, and invasion of allochthonous species (Dukes and Mooney, 1999; Walther et al., 2009). Deteriorating aquatic ecosystems may have a strong economic impact (Landsberg, 2002; Falconer and Humpage, 2005; Backer and McGillicuddy, 2006): Dodds et al. (2013) calculated that freshwater ecosystems disruption due to human activity reduced the value of marketable aquatic benefits by ~16% globally, or ~$900 billion. Future climate change scenarios predict rising air and water temperatures, enhanced vertical stratification of aquatic ecosystems, and changing seasonal and annual weather patterns. Climate models foresee more frequent and more intense rainfall events (with storms and floods) alternating with longer periods of drought (Dokulil et al., 2009; Dokulil and Teubner, 2011). Such conditions are ideal for the growth, dominance, persistence, and geographic expansion of several harmful cyanobacteria species (Paerl and Huisman, 2009; Reichwaldt and Ghadouani, 2012). Global climate change and anthropic eutrophication are expected to accelerate the shift to turbid water and cyanobacteria-dominated conditions in aquatic environments (Jöhnk et al., 2008; Paerl and Huisman, 2008; Slim et al., 2014; Rousseaux and Gregg, 2015). The optimal water temperature for the growth of cyanobacteria (>25°C; Robarts and Zohary, 1987; Coles and Jones, 2000) is higher than that of green algae or diatoms (Wetzel, 2001). The density of water drops proportionally to its increase in temperature contributing to its vertical stratification in aquatic ecosystems and promoting cyanobacteria growth in the epilimnion (Salmaso, 2005; Winder and Sommer, 2012). Global warming may prolong the annual period of water stratification (Markensten et al., 2010), increasing the dominance of cyanobacteria and nitrogen fixation (Elliott, 2012; Hense et al., 2013). Cyanobacteria generally thrive on higher nutrient loads (N, P), while nutrient stoichiometry determines interspecific competition between cyanobacteria and other algae (Savadova, 2014). Changes
in physical parameters such as surface water temperature over time can even lead to algal species succeeding one another during the same bloom, as reported by Wu et al. (2016; Dianchi Lake, China). Recent studies indicate that cyanobacteria have increased far more than other phytoplankton communities since c. 1800, and especially after 1945 (Taranu et al., 2015). Coupled with the growing demand for water safety, this trend will probably pose critical environmental and socio-economic problems in the next few years (Paerl and Paul, 2012). Australia, Canada, some European countries and the United States have started state-run toxin monitoring programs (including some for freshwaters) and applied marine fish and shellfish harvesting restrictions, but studies on freshwater harmful algal blooms (HABs), including cyanobacteria and cyanotoxins, lags far behind research on marine HABs and their biotoxins (Carmichael, 2001). Most countries have small research programs on freshwater HABs with small budgets, despite cyanotoxins being considered a priority by the European Water Framework Directive and World Health Organization (Chorus, 2005). The globally increasing frequency of HABs has prompted investigations into environmental monitoring methods and protocols (Lopez et al., 2008). Analyses on blooming toxins and their concentrations produce relevant information, but too late for the prevention of health risks, so early-warning tools for continuously monitoring aquatic ecosystems are a strong research priority (Lopez et al., 2008; Fadel et al., 2014).

The typical dynamics of cyanobacterial blooms make monitoring their quantity and spatial/temporal distribution difficult. Surface blooms can appear within hours and without warning, due not to rapid cell growth but to the upward migration of existing dispersed population. Their onset and severity therefore depend partly on the size of the existing which need not to be particularly large, but becomes much more concentrated as it floats to the surface (Oliver and Ganf, 2000). Processing phytoplankton samples is time-consuming, whereas immediate measurements are often needed to ensure the safe use of water resource. Local agencies monitoring water quality have to combine monitoring programs with faster techniques, which may also be used for a synoptic coverage of their water systems. This is where Earth observation (EO) might provide valuable data (Hestir et al., 2015) on sites of algal blooms (Wang and Shi, 2008; Stumpf et al., 2012; Matthews and Odermatt, 2015), or their duration across multiple lakes in a given ecoregion. These data are useful for establishing in situ monitoring programs, planning in situ sampling activities, and identifying environmental factors that can promote cyanobacterial blooms.

Several studies demonstrated the capability of mapping algal blooms with optical radiometers operated from the ground or on to space-borne platforms (Palmer et al., 2015; Matthews, 2014; Odermatt et al., 2012). Good results were obtained using specific empirical/semi-empirical algorithms for a given site sensor (Matthews et al., 2012; Hu et al., 2010; Kudela et al., 2015; Shi et al., 2015), or physically based approaches based on spectral inversion of analytical/semi-analytical models, or neural networks (Doerffer and Schiller, 2008; Riha and Krawczyk, 2011; Wynne et al., 2010; Li et al., 2013; Mishra et al., 2013; Li et al., 2015), or hybrid solutions (Carvalho et al., 2010; Matsushita et al., 2015). The first and most often adopted approach involves studying the spectral shape of a signal reflected by water in the visible- near-infrared (VIS-NIR) spectral range (Gilerson et al., 2010; Gurlin et al., 2011; Grielson et al., 2008). Accessory photosynthetic pigments make cyanobacteria distinguishable from other phytoplankton communities based on their typical features in water reflectance spectra (Babin and Stramski, 2002; Pozdnyakov and Grasli, 2003; Roy et al., 2011). Phycocyanin (PC), the diagnostic pigment most often used to detect cyanobacteria (Dekker et al., 1995; Schalles and Yacobi, 2000; Simis et al., 2007; Randolph et al., 2008; Duan et al., 2012; Yacobi et al., 2015), has characteristic absorption and reflectance peaks around 620nm and 650nm, respectively (Gons et al., 2005; Simis et al., 2005). Phycoerythrin (PE), another specific pigment, has absorption and reflectance peaks at 565 nm and 600 nm, respectively (Bresciani et al., 2011).

Multispectral sensors (e.g., Landsat and more recently Sentinel-2) are generally unable to distinguish between waters dominated by cyanobacteria vis-à-vis by other algal species because their spectral band configuration is unsuitable for detecting features of PC-related reflectance or other characteristics unique to cyanobacteria. These sensors might be used in spectral inversion techniques (Dekker et al., 1991), however, to map water quality parameters (including Chl-a concentration), and in empirical relations with phytoplankton pigments (Vincent et al., 2004). Ocean color sensors (MERIS from 2002 to 2012 and now Sentinel-3), have bands appropriate for identifying spectral features due to Chl-a and both PC (Becker et al., 2009; Qi et al., 2014; Dash et al., 2011) and PE (Westberry et al., 2005; Bresciani et al., 2011), but not at low concentrations (Kutser et al., 2006), or in small lakes (where a 300-m pixel size is not good enough for image analysis). Ground-based observations like those obtained with hyperspectral sensors can provide reference measures for EO data validation (Brando et al., 2016; Zibordi et al., 2009), mediate between EO, in situ and laboratory data (Bresciani et al., 2013) and generate monitoring data for areas too narrow for EO data (Hommersom et al., 2012). Airborne and space hyperspectral sensors provide a contiguous for identifying key water quality indicators and phytoplankton pigments (Hestir et al., 2015). Finally, integration of multi-sensor EO data, such as MERIS and
Remote sensing of cyanobacteria blooms in Italy

Two species reportedly most often responsible for - *Planktothrix rubescens* (De Candolle ex Gomont) Anagnostidis and Komárek, and *Microcystis aeruginosa* (Kützing) Kützing (Messineo et al., 2006; Salmaso and Mosello, 2010) - both of them produce microcystins (Briand et al., 2003), a very common class of cyanotoxins, implicated in human and animal poisoning. *P. rubescens* typically inhabits deep lakes with a stable stratification and a metalimnetic layer in summer where this species adapted to low light and low temperatures can find the ideal growing conditions, as the phycoerythrin pigment gives rise to extremely effective light-capturing mechanisms (Steinberg and Hartmann, 1988), allowing its survival at lower depths than most algae (Davis et al., 2003). Many deep lakes and reservoirs in Europe are suitable for *P. rubescens* (Guiry and Guiry, 2011). In Italy, *P. rubescens* blooms have been reported in: Lakes Garda (Salmaso, 2000), Iseo (Garibaldi et al., 2003), Maggiore (Morabito et al., 2002), Orta (Morabito, 2001), Spino (Viaggiu et al., 2003) and Pusiano (Legnani et al., 2005) in the northern subalpine region; Lakes Albano and Fiastrone (Viaggiu et al., 2003), Nemi (Margaritora et al., 2005) and Vico (Manganelli et al., 2010) in Central Italy; and Lake Arancio (Caselli-Flores and Barone, 2007) in the South. In some cases, *P. rubescens* has been repeatedly reported as the dominant cyanobacterium in long-lasting bloom events (Viaggiu et al., 2004). The physiological mechanism behind *P. rubescens* blooms has been studied extensively in Lake Zurich (Walsby, 2005; Walsby et al., 2006): the buoyancy of the filaments is regulated by the balance between carbohydrates production and consumption mediated by the underwater light and controlled by the depth of the mixed layer.

M. aeruginosa is a typical inhabitant of epilimnetic waters, adapted to high light conditions. This species is very common in Italy. In the north, its presence and/or blooms have been reported for Lakes Garda, Iseo, Maggiore, Caldonazzo, Canzolino, Serraia, Pusiano, Como and Monate (Manganelli et al., 2014; ISTISAN 35/11). In central and southern Italy, it has been detected in 6 lakes: Massaciuccoli, Trasimenos, Polverina, Castreccioni, Liscione and Cecita. It has also been found in 13 lakes in Sardinia and 3 lakes in Sicily (Manganelli et al., 2014; ISTISAN 35/11). Studies on the Sicilian reservoirs found blooms of *Microcystis* spp. associated with variations in water level, occurring common occurrence due to the Mediterranean climate (rainy winters and dry summers) and the island’s river network (mainly consisting of temporary streams). In summer, water is drawn from lakes for irrigation and drinking purposes, causing a rapid drop in their le vel, that often prompts a lowering thermocline and disrupted stratification. The consequent marked change of mixing regime can mobilize the nutrients stored in the hypolimnion, boosting *Microcystis* blooms.
CASE STUDIES: EXPLOITING REMOTE SENSING DATA

Three case studies were conducted in Lombardy (northern Italy), a region rich in both deep, medium-to-large, and small shallow lakes (Fig. 1). Materials and methods used for the three study cases analyzed are summarized in Tab. 1. Details for each study case are provided in the specific paragraphs.

Landsat-8 OLI for detecting blooms in Como and Pusiano lakes

The Como and Pusiano lakes (Fig. 1) are on the edge of the Landsat-8 OLI (L8) acquisition path, so they can be monitored on an 8-day (instead of the standard 16-day) cycle, which improves the chances of cyanobacterial blooms being identified because they sometimes last only a few days (O’Neil et al., 2012). Their spatial mapping with L8 imagery used in this study shows that the satel-

Fig. 1. Map showing the lakes in Lombardy Region (northern Italy) investigated in this study.
Remote sensing of cyanobacteria blooms in Italy

Lite’s 30-m pixel resolution suffices to capture the patchy distribution of cyanobacteria blooms (Fig. 2).

In early August 2013, an anomalous cyanobacterial bloom occurred in Lake Como (a large, deep lake in an oligo-mesotrophic state) that made its waters unsuitable for bathing or drinking for several days. The bloom was caused by *Dolichospermum lemmermannii* (Richter) Wacklin, Hoffmann and Komárek, a cyanobacterial species that produces surface scum. The bloom may be patchy, so L8 images were coupled with *in situ* monitoring, which was particularly challenging given the lake’s size (145 km²) and the bloom’s short duration. Five L8 images acquired between the end of July and mid-August 2013 were radiometrically adjusted for water applications (Pahlevan et al., 2014), then atmospherically corrected with the 6SV code (Vermote et al., 2006). Surface bloom was detected using a band-ratio approach developed for similar purposes (Mayo et al., 1995; Mahasandana et al., 2001). Pixels where all three of the band-ratios i) b3 (561 nm) / b2 (483 nm); ii) b5 (865 nm) / b4 (655 nm); and iii) b3 (561 nm) / b4 (655 nm) higher than 1 were identified as scum. Using this method, numerous pixels revealed scum on the L8 image acquired on 1 August 2013, and none on or subsequent images. Fig. 2 shows the patchy distribution of *D. lemmermannii* at sites distributed all over the lake (total area = 431.8 ha). The satellite map was comparable with *in-situ* measurements obtained a day later, when the surface cyanobacteria concentration at the site in Fig. 2 was 365x10⁶ cell L⁻¹. The scum was only mapped on 1 August 2013. It probably appeared as a result of significant rainfall blooming few days earlier. On 29 July 2013 precipitation occurred on Lake Como, 26 mm and 40 mm of 24 h cumulated precipitation, was recorded respectively in Como (south of the lake) and in Gera Lario (north) by ARPA Lombardia stations. A recent investigation (Callieri et al., 2014) found that *D. lemmermannii* blooms occasionally recorded in deep subalpine lakes in Italy were supported by nutrient pulses deriving from the mineralization of organic matter deposited along the lakeshore and released by rainfall event.

Nutrients arriving from the lake’s catchment area can stimulate phytoplankton growth, especially in oligo-mesotrophic lakes (Morabito et al., 2012), and combined with a seasonal increase in water temperature this would facilitate *D. lemmermannii* proliferation (Olrik et al., 2012; Salmaso et al., 2015).

L8 data acquired on 11 November 2015 captured a

Fig. 2. Map of cyanobacteria scum (in green) in Lake Como from L8 data on 1 August 2013. The red circle marks the site of *in situ* measurements.

Tab. 1. Details on the sensors, number of images, approaches used and products derived for each lake object of this study.

<table>
<thead>
<tr>
<th>Lake</th>
<th>Sensor</th>
<th>Number of images</th>
<th>Approach</th>
<th>Aim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Como</td>
<td>Landsat 8 - OLI</td>
<td>5</td>
<td>Band ratio</td>
<td>Cyanobacteria blooms identification</td>
</tr>
<tr>
<td>Pusiano</td>
<td>Landsat 8 - OLI</td>
<td>1</td>
<td>Bio-optical modeling</td>
<td>Maps of Chl-a concentrations</td>
</tr>
<tr>
<td>Comabbio</td>
<td>ENVISAT MERIS-FR</td>
<td>217</td>
<td>MPH</td>
<td>Multi temporal Cyanobacteria occurrence</td>
</tr>
<tr>
<td>Pusiano</td>
<td>ENVISAT MERIS-FR</td>
<td>248</td>
<td>MPH</td>
<td>Multi temporal Cyanobacteria occurrence</td>
</tr>
<tr>
<td>Varese</td>
<td>ENVISAT MERIS-FR</td>
<td>276</td>
<td>MPH</td>
<td>Multi temporal Cyanobacteria occurrence</td>
</tr>
<tr>
<td>Mantua</td>
<td>Hyperspectral (MIVIS-APEX-CHRIS)</td>
<td>7</td>
<td>Semi-empirical algorithms</td>
<td>Maps with zones characterized by high mean Chl-a concentration and high variability</td>
</tr>
</tbody>
</table>
cyanobacterial bloom in Lake Pusiano (a small lake south of Lake Como, in between its two branches). This lake has been hypereutrophic since the 1970s. Its total phosphorus concentrations have been gradually reduced by means of a water treatment plant, although cyanobacterial blooms have been observed again in recent years (Margaritora et al., 2006). During the L8 acquisition (was at 10:10 UTC) some stations were visited between 9:00 to 11:00 UTC to collect water samples and measure water reflectance spectra with a WISP-3 (Hommersom et al., 2012). The average Secchi disk depth was 1 meter (±20 cm), and no scum was apparent, while the cyanobacterial biomass in the uppermost layers of the water column was observed. The phytoplankton samples analyzed under the inverted microscope (400x magnification) according to Utermöhl (1958) revealed mainly Woronichinia naegeliana (Unger) Elenkin, but also Dolichospermum (cf. planctonicum) (Brunnthaler) Wacklin, L.Hoffmann and Komárek, and M. aeruginosa.

Chl-a concentrations were measured by spectrophotometry according to Lorenzen (1967) and HPLC. Photosynthetic pigments for HPLC analysis were extracted in 90% acetone, overnight in the dark, under nitrogen. The extract obtained was used to quantify Chl and its derivatives (in Chl derivatives units, CD) and total carotenoids by spectrophotometry. Individual carotenoids were detected by reverse-phase HPLC with an Ultimate 3000 (Thermo Scientific). Specific pigments were identified by ion pairing, reverse-phase HPLC described in Guilizzoni (2011). PC concentrations were quantified with the spectrophotometer (SAFAS UVmc2) in 1 cm path-length cuvettes using the equations of Bennett and Bogorad (1973).

The average Chl-a concentration measured at the pelagic stations with no accumulated surface cyanobacteria (dots in Fig. 3) was 12 mg m⁻³ (±5 mg m⁻³), while it was significantly higher at the two coastal stations and the other pelagic station where scum was found, at 173 mg m⁻³, 550 mg m⁻³ and 97.4 mg m⁻³ respectively. The corresponding PC concentration were 449 mg m⁻³ and 5210 mg m⁻³ respectively for two coastal stations. HPLC on two surface samples collected in the pelagic zone revealed high concentrations of two cyanobacteria marker pigments (echinenone and myxoxanthophyll, with mean values of 14.7 mg m⁻³ and 16.4 mg m⁻³, respectively). L8 data were radiometrically and atmospherically corrected using the same procedure as for Lake Como to compute the Chl-a concentrations and test the ability of L8 to capture blooms. The water reflectances obtained in the first four L8 bands were comparable with the spectra obtained in situ (with correlation coefficients of 0.57, 0.72, 0.83 and 0.79 for bands 1, 2, 3 and 4; ***P<0.001 for all four bands). L8-derived water reflectances were converted into Chl-a concentrations by adopting a spectral inversion procedure based on a bio-optical model (Giardino et al., 2012, 2014) parameterized with specific inherent optical properties of eutrophic water. For the three pelagic stations, the average Chl-a concentration was 10.7 mg m⁻³ (±1.4). The coastal area was more difficult to assess because the L8 band setting might be too coarse for the very high concentrations involved, but the Chl-a concentrations for the two coastal stations exceeded 30 mg m⁻³ (much higher than at the pelagic stations), consistently with field observations.

As in other inland water ecosystems, the patchy distribution of cyanobacterial blooms seen in Lake Pusiano was due mainly to wind (Webster and Hutchinson, 1994; Zilius et al., 2014; Wu et al., 2015).

MERIS for monitoring cyanobacterial blooms in meso-eutrophic subalpine lakes

Small lakes south of the Alps are shallow, highly eutrophic, with highly variable Chl-a concentrations. Lake Varese is calcareous of glacial origin, sited to the west of Lake Maggiore. It has a mean depth of 11 m, and a surface area of 14.8 km². It is dimictic, with a summer stratification from May to November and an inverse stratification in winter. Lake Comabbio was originally linked to Lake Varese. It is polymictic, with a summer stratification from April to October. It has a mean depth of 4.6 m and a surface of 3.6 km².

For lakes Comabbio, Pusiano and Varese, respectively, 217, 248, and 276 MERIS Full Resolution (FR) images obtained from June to November (2003-2011) were processed to assess cyanobacterial blooms.

The MERIS FR Coast-Color level-1b images were pre-processed to correct the Rayleigh effect with the

![Fig. 3. Chl-a concentrations mapped in Lake Pusiano from L8 on 11 November 2015. The circles indicate the sites of in situ stations.](image-url)
Remote sensing of cyanobacteria blooms in Italy

BEAM BRR (Bottom-of-Rayleigh Reflectance) processor. The product was then processed with Maximum Peak-Height (MPH) processor (Matthews et al., 2012). MPH exploits the BRR peaks in the red and near-infrared bands above a given baseline, which moves depending on the pigment concentrations. It provides a MPH index that is useful for calculating Chl-a concentrations, as towered as flags for floating material and for eukaryote or cyanobacteria dominance for each pixel. Cyanobacteria dominance was estimated at 25%, 6%, and 12% on the images of the Comabbio, Pusiano and Varese lakes, respectively. The timing of this phenomenon varied from lake to lake, from season to season, and from to year. It was recorded most frequently in 2008 for Lakes Pusiano and Varese, and in 2011 for Lake Comabbio (Fig. 4). Considering the whole period, October was the month most frequently involved for Lake Comabbio, November for Lakes Pusiano and Varese (Fig. 5). Some of the events have been fully documented, i.e., P. rubescens blooms in Lake Pusiano in Autumn 2010 (Salmaso et al., 2014a) and in Lake Varese in November 2011.

These results clearly show that cyanobacterial blooms

![Fig. 4. Number of cyanobacterial blooms thereby year meso-eutrophic subalpine lakes.](image)

![Fig. 5. Number of cyanobacterial blooms by month in the three meso-eutrophic subalpine lakes. In the table the number of cloud-free images per month.](image)

<table>
<thead>
<tr>
<th>LAKE</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMABBIO</td>
<td>30</td>
<td>51</td>
<td>42</td>
<td>38</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>PUSIANO</td>
<td>37</td>
<td>57</td>
<td>53</td>
<td>40</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>VARESE</td>
<td>43</td>
<td>67</td>
<td>57</td>
<td>47</td>
<td>33</td>
<td>29</td>
</tr>
</tbody>
</table>
in the subalpine lakes can occur even outside the bathing season, meaning that environmental agencies' typical monitoring programs can underestimate them if sampling is only done in summer. Recreational uses of these lakes often continue into late summer and early autumn, however, carrying a risk of intoxication for people and animals.

Imaging spectrometry for spatial analysis of Chl-a in hypertrophic waters

Lake Superior is the largest of three shallow hypertrophic lakes surrounding the town of Mantua, in northern Italy, with a surface area of 3.67 km² and an average depth 3.6 m. It is part of an artificial fluvial lake system created by damming the Mincio River in the 12th century. Water levels in Lake Superior are regulated by the Vasarone dam and Vasarina gate (built in 2015), to ensure a constant 17.5 m asl (Pinardi et al., 2011, 2015). Considerable nutrient loads enter the lake from its main tributary (the Mincio River), sustaining a dense phytoplankton community, with recurrent blooms that bring Chl-a concentrations up to about 100 mg m⁻³ (Bolpagni et al., 2014).

Seven images of Lake Superior were used to examine the spatial variability of mean Chl-a concentrations over time. All images were acquired from June to September by hyperspectral sensors on airborne platforms, i.e. MIVIS (2007-07-26) and APEX (2011-09-21 and 2014-09-27), and the satellite platform Proba-1 CHRIS (2008-06-29, 2008-09-16, 2011-08-28 and 2012-08-06). Chl-a concentrations were measured using the procedures described in Pinardi et al. (2015), during the season most associated with phytoplankton blooms, when local authorities, monitor the situation in accordance with the Italian Water Framework Directive guidelines.

The temporal analysis of the seven images was done in a GIS environment, using the same reference system (WGS84) and cartographic projection (UTM Zone 32N). Pixels were aggregated to a 15-m spatial resolution, which is the minimum common pixel size providing the spatially most detailed outcome. The GRASS function (r.series) and raster calculator tool were used to obtain statistics (e.g., mean, standard deviation, coefficient of variation) of the temporal series for each pixel of Mantua Lake Superior. Some zones with particular statistical properties were selected and polygonized (Fig. 6): the yellow polygons identify areas with higher mean Chl-a concentrations (35-45 mg m⁻³), and relatively lower standard deviations (less than 30 mgm⁻³; mean coefficient of variation 0.75); the red polygons are areas with a high coefficient of variation (>0.9). The main hydrodynamic events influencing Chl-a distribution related to the combined effects of wind force and riverine current. The red zones identify areas where significant water circulation influenced the Chl-a concentrations, the yellow zones indicate areas where water stagnation favored phytoplankton bloom and accumulation.

CONCLUSIONS

This study aimed to describe the capabilities of remote sensing for mapping cyanobacterial blooms and to highlight the main advantages of such techniques, i.e. a synoptic view and frequent acquisitions to track dynamic phenomena. The case studies show that combining remote sensing with in situ measurements can help monitor cyanobacterial blooms in Italian lakes. Landsat-8 OLI data provided both the spatial distribution of cyanobacterial blooms in a small eutrophic lake, and the patchy distribution of scum in a large deep subalpine basin. The 10-year-long database of MERIS images enabled a dynamic mapping of cyanobacterial blooms affecting water quality in three small meso-eutrophic lakes, showing that algal blooms occurred for about 5 days a year, typically in late summer and early autumn. Air- and space-borne hyperspectral sensors were tested as a source of data for mapping Chl-a concentrations in Mantua’s lakes, revealing that some zones of these lakes have higher Chl-a concentrations due to water circulation, suggesting the need to align in situ monitoring programs with the findings on hyperspectral images.

Future research will focus on further developing algorithms to enhance cyanobacterial mapping accuracy by including of semi-empirical and physically-based approaches to secondary pigments in cyanobacteria. The algorithms will also be adapted to new generation satellite

![Fig. 6. Spatial analysis of Chl-a in Mantua Lake Superior obtained from hyperspectral images. The red zones had a higher coefficient of variation. The yellow zones had higher mean Chl-a concentrations, and would be appropriate for new in situ sampling sites.](https://example.com/fig6.png)
sensors like the ESA Sentinel of the EC Copernicus program to access their fully operational EO capacity and improved spatial, radiometric and temporal resolutions. Sentinel-1 is a radar (SAR) instrument that can support scum detection even under cloud, and Sentinel-2 (like Landsat-8) can shed light on water quality. Most importantly, Sentinel-3 will be the successor of MERIS, with many optical bands specifically geared to water quality applications, and will assure continuous data acquisition for the next decades.

ACKNOWLEDGMENTS

This work was funded by the BLASCO project (CARIPLO Rif. 2014-1249). The activities and results obtained at the Mantua lakes were part of INFORM projects (grant agreement No. 606865) funded under the European Community’s Seventh Framework Programme (FP7/2007-2013). Landsat-8 OLI data were gathered from USGS; MERIS and CHRIS images were provided by ESA within the AO-553 MELINOS project. The European Facility for Airborne Research (EUFAR) provided the APEX images. We are very grateful to Fabio Buzzi (ARPA Lombardy) for providing us in situ data and to Alessandro Marieni (Centro Studi Biologia Ambiente s.n.c., Erba, Como) for logistic help and field assistance during the sampling in Lake Pusiano. We thank F. Coburn for revising the English of the manuscript. We are very grateful to the anonymous reviewers for their valuable comments.

REFERENCES

Dekker A, Malthus T, Hoogenboom HJ, 1995. The remote sens-

Remote sensing of cyanobacteria blooms in Italy

Remote sensing of cyanobacteria blooms in Italy

