Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia)

Jérôme KAISER,1* Bora ÖN,2 Helge ARZ,1 Sena AKÇER-ÖN2

1Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119 Rostock-Warnemünde, Germany
2Muğla Sıtkı Koçman University, Faculty of Engineering, Department of Geological Engineering, Muğla, Turkey

*Corresponding author: jerome.kaiser@io-warnemuende.de
Supplementary Fig. 1. Mass spectra of C\textsubscript{23} 1,2 diol (a) and C\textsubscript{25} 1,2 diol (b), and tentatively identified C\textsubscript{22} 1,2 diol (c) and C\textsubscript{24} 1,2 diol (d) TMSi derivatives. Major fragmentations are shown in (a). All TMSi derivatives have common fragments with m/z 73 [(CH\textsubscript{3})\textsubscript{3}Si]+, m/z 103 [CH\textsubscript{2}O(CH\textsubscript{3})\textsubscript{3}Si]+, m/z 147 [(CH\textsubscript{3})\textsubscript{3}SiOSi(CH\textsubscript{3})\textsubscript{2}]+, which is characteristics for diols, and m/z 205 [CH(CH\textsubscript{3})\textsubscript{3}SiOCH\textsubscript{2}OSi(CH\textsubscript{3})\textsubscript{3}]+ caused by α-fragmentation of 1,2 diols.
Supplementary Fig. 2. Molecular structures and m/z diagnostic values [M+H]+ of the detected GDGTs. See Liu et al. (2012b) for a detailed approach on the molecular structures of glycerol ether lipids.