
INTRODUCTION

The Caspian Sea, bordered by five countries in West
Asia, is the world’s largest lake (Dumont, 1998) and pro-
vides both major economic resources, such as petroleum,
gas, and caviar (Dumont, 1998), and ecological challen-
ges (Nasrollahzadeh, 2010). The lake is generally divided
into northern (25%), middle (36%), and southern (39%)
areas (Nasrollahzadeh et al., 2008). The southern area is
the largest and deepest part of the lake (Tahami et al.,
2012). The ecosystem is unique because of the lake’s
many endemic and ancient fish species (e.g., sturgeon),
which are under increasing pressure as a result of incon-
sistent socioeconomic development across the five coun-
tries. An accurate overview of the lake’s environmental
traits and the habitat of its most economically valuable
species is necessary for decision makers to initiate appro-
priate ecological policy for the Caspian Sea.

As part of efforts to conserve and restore declining fish
stocks worldwide (Abell et al., 2007; Thrush and Dayton,
2010), reducing allowable fishing catches (Worm et al.,
2009) and protecting essential habitat (Thrush and Day-

ton, 2010) have been proposed as the main mechanisms
for maintaining a viable population of exploited species
(Hermosilla et al., 2011). The ecosystem-based fishery
management (EBFM) framework has drawn attention to
the effective management of marine environments (Brod-
ziak and Link, 2002; Pikitch et al., 2004). Implementing
EBFM necessitates knowledge of essential habitats
(Thrush and Dayton, 2010) for the conservation and re-
storation of fish stocks (Abell et al., 2007; Thrush and
Dayton, 2010). The effective management of living re-
sources generally requires knowledge of the relevant eco-
system (Mangel et al., 1996). A species’ distribution and
environmental affinities are essential to comprehending
numerous aspects of its ecology, to its effective conserva-
tion and management (Hermosilla et al., 2011), and to as-
sessing how anthropogenic activity may affect it
(Macleod et al., 2008; Valavanis et al., 2008). The geo-
graphical distribution of a species is critical to gaining a
comprehensive knowledge of its populations, ecology,
and management (Hermosilla et al., 2011). Habitat Sui-
tability Index (HSI) models are valuable ecological tools
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ABSTRACT
To comprehensively manage an ecosystem such as that of the Caspian Sea, the world’s largest lake, detailed knowledge of the habitat

traits of the living organisms in the ecosystem is essential. The present study examined environmental variables and used the Habitat
Suitability Index (HSI) model to determine the most preferred seasonal habitat and optimal environmental range of Caspian shad (Alosa
spp). The fish preferred deep waters with low levels of total organic matter and sea level anomaly in winter and productive areas with
a high concentration of chlorophyll-a (Chla) and relatively high benthos biomass in spring. The number per unit area (NPUA)-based
HSI model determined that the geometric mean model (GMM) was the optimal model for defining a suitable habitat in winter. For
spring, the arithmetic mean model (or GMM) in the NPUA-based HSI model most accurately predicted preferred habitat for Caspian
shad. The average NPUA in both seasons increased with the HSI; areas with an HSI of between 0.4 and 0.6 in spring and between 0.6
and 0.8 in winter had a high percentage of total catch. Areas with an HSI of more than 0.5 had over 91% and 63% of the total catch in
spring and winter, respectively, demonstrating the reliability of the NPUA-based HSI model in predicting Caspian shad habitat. The
present study shows that remotely sensed data plus depth are the most critical environmental variables in Caspian shad habitats and
that Chla and SLA are the most critical remotely sensed parameters for near real-time prediction of Caspian shad habitat.
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211Habitat suitability of Caspian Shad

(Schamberger et al., 1982; Allen et al., 1983; Vinagre et
al., 2006; Chen et al., 2009) that can be used to rapidly
assess the relative potential of a habitat and may be com-
bined with geographical information system (GIS) data to
evaluate the habitat of a species. HSI models use suitabi-
lity indices (SIs) as a function of one or more individual
habitat variables that are scored on a standard scale of 0-
1 to indicate the quality and suitability of habitats (Brown
et al., 2000; Chen et al., 2009; Tian et al., 2009; Chen et
al., 2010). A composite HSI score is then computed with
a range of 0-1, from unsuitable to optimal habitat (Brooks,
1997). The HSI models were developed to reflect the hy-
potheses of species-habitat relationships and facilitate en-
vironmental impact studies (Schamberger et al., 1982).
When combined with adequate data about key habitat va-
riables, the models have successfully predicted changes
in fish species’ spatial patterns worldwide (Chen et al.,
2009; Tian et al., 2009; Chen et al., 2010; Chang et al.,
2013), including in the Caspian Sea (Haghi Vayghan et
al., 2013). 

Alosa species are widely distributed in the Caspian
Sea, Black Sea, Mediterranean Sea, and Atlantic Ocean.
Caspian shad (Alosa spp) is a commercial fish species
of the Clupeidae family and is widely distributed in the
Caspian Sea, mostly in the western half and southern
area of the Caspian Sea basin (Coad, 1995). Caspian
shad, members of the valuable commercial herring fa-
mily, are fed on by most predators in the Caspian Sea
(e.g., Caspian salmon and sturgeon) and compete for
food with other herring species such as kilka (Abbasi
and Sabkara, 2004; Abdollapour et al., 2007). Caspian
shad usually reach maturity at age 2-5 years and have a
life span of up to 10 years, though these periods may dif-
fer between subspecies; the prevalent sizes and weights
have been reported as 16-21 cm and 60-130 g, respecti-
vely, for males and 18-23 cm and 70-140 g, respectively,
for females (Coad, 1995; Coad, 1997; Abdollapour et
al., 2007). Alosa spp naturally move to the northern wa-
ters of the Caspian Sea for spawning in spring, with mi-
gration peaks occurring in April and May. Some
subspecies spawn in the open sea and some of them
spawn in northern water (Whitehead et al., 1985; Coad,
1995; Coad, 1997). Caspian shad have various seasonal
habitat preferences, chiefly in the warmer and deeper
waters of the south in winter, and move to the northern
waters in spring to spawn and feed (Coad, 1995), which
makes the species interesting for temporal habitat study.
No previous studies have investigated the habitat prefe-
rences or optimal management strategies of the species
to inform policy making for recovery programs, EBFM
implementation, or marine spatial planning (MSP)
(Foley et al., 2010) in the Caspian Sea. However, the
models applied in the present study enable the selection
of the most critical explanatory variables, thus revealing

the variables’ optimal ranges and the species’ temporal
responses to variables changes and facilitating the crea-
tion of successful conservation and management pro-
grams in the Caspian Sea.

This study applied and compared four empirical HSI
models to determine the most appropriate model and find
out the SI’s of selected remotely sensed and field variables
in regard to winter and spring. The key variables in the
spatial distribution of the Caspian shad in the southern
Caspian Sea were also investigated, and the spatio-tem-
poral habitat preferences of the target species were inve-
stigated to facilitate an effective conservation and
management program in the Caspian Sea. 

METHODS

Study area, fishery, and environmental data

The study area comprised the entire southern area of
the Caspian Sea, which borders the Iranian provinces of
Guilan, Mazandaran, and Golestan (Fig. 1). Daytime
bottom trawl were performed in winter (152 trawls from
2009 to 2011) and spring (155 trawls from 2008 to 2010)
by a Guilan research vessel. In total, 78 sites were con-
sidered for data collection. The total weight and number
of specimens were recorded at each sampling station. In
the present study, Alosa was recorded with average
weights of 55.9±4.54 (means ±SE) and 155.7±14.49
(means ±SE) in spring and winter seasons, respectively.
To determine stock abundance index, representing the
habitat preference (Maunder and Punt, 2004; Tian et al.,
2009; Haghi Vayghan et al., 2013), the catch per unit
area (CPUA) and number per unit area (NPUA) of each
site were calculated using an equation designed by
Sparre and Venema (1998).

A set of environmental variables derived from remo-
tely sensed and field sampling data was selected based on
survey time (Tab. 1). The variables were assumed to be
linked directly or indirectly to the biology and ecology of
the Caspian shad. 

Developing suitability index curves                               
and Habitat Suitability Index models

Initially, the SI for every environmental variable was
fixed to clarify the relationships between the environmen-
tal variables and abundance index (NPUA or CPUA) of
the Caspian shad in spring and winter. The SI is conti-
nuous and ranges from 0 to 1. For the SI model, each
abundance index was used as the response variable, and
the environmental variable was used as the explanatory
variable. One HSI model for both abundance indices (SI-
CPUA and SI-NPUA) was examined for each season.
Both scatter plot analysis and preliminary linear regres-
sion failed to detect a linear relationship between the en-
vironmental variables and CPUA (or NPUA) as response
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212 A. Haghi Vayghan et al.

Fig. 1. Map showing the study areas of the southern part of the Caspian Sea and bottom trawl survey points of winter and spring.

Tab. 1. Data sources and description of environmental variables used as model inputs.

Parameter                                                                         Sensor/Model                         Units           Resolution                      Source/map

Remotely sensed data
Sea surface temperature (SST)                                           MODISA                               °C              0.0416667°        http://oceancolor.gsfc.nasa.gov
Photosynthetically active radiation (PAR)                         MODISA                            E/m2/d          0.0416667°        http://oceancolor.gsfc.nasa.gov
Sea level anomaly (SLA)                             Merged Jason-1, Envisat, 2, GFO, T/P        cm             0.2942888°            www.jason.oceanobs.com
Sea surface Chlorophyll-a (Chla)                                       MODISA                            mg/m3                 0.0416667°        http://oceancolor.gsfc.nasa.gov

Field sampling data
Sediment total organic matter (TOM)                                       -                                       %                   0.01°                      Produced by author
Sand percent                                                                              -                                       %                   0.01°                      Produced by author
Depth                                                                                         -                                        m                   0.01°                Bathymetry map produced

                                                                                                                                                                                              by author using CEP data
                                                                                                                                                                                    (http://www.caspianenvironment.org)
Benthos biomass                                                                           -                                     g/m2                            0.01°                      Produced by author
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213Habitat suitability of Caspian Shad

variable; therefore, we examined nonlinear relationships
(Hastie and Tibshirani, 1990; Guisan et al., 2002; Zuur et
al., 2007). The spline smooth regression method was ap-
plied in the SI models by using S-PLUS ver. 8.0.4 to fit
environmental variables and the CPUA (or NPUA) as
smoother and response variables, respectively (Chen et
al., 2009; Tian et al., 2009). The SI of each environmental
variable was calculated using the following equation
(Zuur et al., 2007; Tian et al., 2009):

                                               
(eq. 1)

where Y^ is the predicted value of CPUA or NPUA, and
minY^ and maxY^ are the minimum and maximum
CPUAs or NPUAs of all predicted CPUAs or NPUAs, re-
spectively.

The range of each environmental variable correspon-
ding to SI values larger than 0.6 was considered optimal
for the fish (Tian et al., 2009). The SI values derived from
each environmental variable were then integrated into the
empirical HSI models.

The four most common empirical HSI models, namely
the continued product model (CPM) (Grebenkov et al.,
2006; Chen et al., 2009), arithmetic mean model (AMM)
(Chen et al., 2009; Tian et al., 2009; Chen et al., 2010),
geometric mean model (GMM)(Lauver et al., 2002; Tian
et al., 2009), and minimum model (MINM) (Van Der Lee
et al., 2006), were used to construct an optimal HSI model
as follows.

The CPM:

                                                  
(eq. 2)

The AMM:

                                                
(eq. 3)

The GMM: 

                                               
(eq. 4)

The MINM: 

                         (eq. 5)

where n is the number of environmental variables and SIi
is the suitability value associated with the ith environmen-
tal variable. We weighted the environmental variables
equally because we had no prior information on their re-
lative importance in defining the habitat of Caspian shad.
A forward selection (based on P-values) of different SI

values was used to estimate the habitat availability for
each HSI model.

Data recorded over 2 years were used to construct the
models, and data from the following year were used to va-
lidate the models. The 4 HSI models were examined using
the Akaike information criterion (AIC) (Akaike, 1974,
1981):

AIC=n×ln (RSS/n)+2×K                                       (eq. 6)

When n/ k < 40, a supplementary AIC (AICc) was used
to adjust for bias (Burnham and Anderson, 2004):

AICc=n×ln(RSS/n)+2×K+(2×K×(K+1))/(n-K-1)    (eq. 7)

where n, k, and RSS are the number of sampling points,
number of variables, and residual sum of squares (RSS),
respectively. The RSS was set as the discrepancy between
the NPUA (or CPUA) and the NPUA (or CPUA) predic-
ted by each HSI model. The predicted NPUA or CPUA
was determined using a linear regression equation fitted
between the HSI model and NPUA (or CPUA) as the in-
dependent and dependent factors. The model with the lo-
west AIC was considered the optimal model and selected
for model testing and validation. When the difference in
AIC between the two top-ranked models was negligible
(Fotheringham et al., 2003), the alternative model is in-
troduced in parentheses.

The map predictions of the HSI models were then
compared with the bottom trawl data recorded in spring
2010 and winter 2011 to evaluate the models’ accuracy.
Root mean square error (RMSE) was used to compare the
forecasting errors of different HSI models (measure of ac-
curacy) (Hyndman and Koehler, 2006), and residual sum
of squarer (RSS) and mean square error (MSE) were used
to determine the extent to which the models fit the data
(Draper and Smith, 1998).

Data analysis and mapping

All remote-sensing satellite data and field data were
prepared and calculated using ArcGIS Version 9.3 (ESRI)
and ILWIS Academic ver. 3.1 were then used for spatial
analysis and mapping the distribution of HSI values. Prior
to the model development, all data were resembled to the
same geographic datum (WGS 1984) and spatial extent.
The final HSI map was calculated by performing the SI
equation of selected explanatory variables and most ap-
propriate modeling by using the spatial analyst extension
in ArcGIS. The variance inflation factor (VIF) was used
to examine multicollinearity to prevent model over fitting
(Montgomery and Peck, 1982; Catterjee and Hadi, 2006;
Montgomery et al., 2007).  Variables with a VIF of more
than10 and highly correlated variables were excluded
from the models. 
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RESULTS

Multicollinearity, optimal range, and suitability index

of environmental variables

No strong correlations except for photosynthetically
active radiation (PAR; in winter) and sea level anomaly
(SLA; in spring) were detected in multicollinearity dia-
gnostic analysis (Chatterjee et al., 2000; Catterjee and
Hadi, 2006), which supports the use of the rest of the en-
vironmental variables in the model (Tab. 2). The PAR va-
riable was correlated to sea surface temperature (SST)
(r=0.86) and SLA had a VIF of more than 10 in winter
and spring; therefore, PAR and SLA were excluded from
the modeling process in winter and spring, respectively.
The depth, benthos biomass, and sand percentage SIs
exhibited similar patterns in both types of modeling; by
contrast, the other variables demonstrated anomalous
trends in winter (Fig. 2). In spring, the SI curve had rela-
tively similar trends in regard to both applied abundance
index (Fig. 3). In both seasons, the SI values predicted
that the preferred optimal ranges of the Caspian shad
would differ according to environmental variables and
season. Caspian shad preferred shallow waters with high
Chla, PAR, SST, and sand percentages in spring, in con-
trast to its winter preferences (Figs. 2 and 3).

Model selection

We used forward stepwise variable selection (based on
P-values) to identify the most parsimonious model through
the four empirical HSI models in each season (Tabs. 3 and
4). Goodness of fit was evaluated according to AIC and

AICc (eqs. 6 and 7). In the top-ranked model, AIC showed
very close together but benthos biomass, Chla, and total or-
ganic matter (TOM) as explanatory variables in NPUA-
based modeling gained low AIC value among the 4models,
indicating that those explanatory variables by applying
AMM (or GMM) represents the most accurate estimate of
habitat suitability of the Caspian shad in spring (Tab. 4). In
winter, NPUA-based modeling (AIC=25.56) with SLA,
depth, and TOM using the GMM (or MIN) estimated ha-
bitat suitability most accurately (Tab. 3). The AMM (or
GMM) in CPUA-based modeling (AIC=28.42) was also
demonstrated as being suitable for estimating Caspian shad
habitat suitability according to benthos biomass, depth,
sand percentage, and Chla in winter (Tab. 3).

Model validation

Based on compared errors (Tab. 5) and the AIC, the
HSIs of spring and winter were estimated using an
NPUA-based AMM and GMM, respectively. We produ-
ced GIS maps for both seasons according to the spatial
analysis results of corresponding HSI values, which was
performed by integrating SI equations (Fig. 4). The Pear-
son correlation showed relatively high correlations
(r=0.64 and r=0.67 in spring and winter, respectively) bet-
ween the map derived from the model and the validated
points recorded the next year. A positive relationship
among the average NPUA, percentage of the total catch,
and HSI value was found. Scatter Plot with 95% confi-
dence interval of percentage of catch (%) against the HSI
values were shown that the correlation coefficient bet-
ween two variables (percentage of catch (%) against the

Tab. 2. Multicollinearity diagnostic analysis (VIF) of environmental variables; range and optimal range of explanatory variables defined
by the spline smooth regression method for the Caspian shad in the southern Caspian Sea in winter and spring.

Environmental variables                         VIF                                 Range            Optimal
                                                                                             SI-NPUA or SI-CPUA                      SI-NPUA                                  SI-CPUA

Winter
Chla                                                        1.40                             1.49 to 7.77                               1.49 to 2.58                  1.49 to 2.58 and 7.04 to 7.77
PAR                                                        5.17                            12.7 to 30.84                            27.01 to 30.84                            12.7 to 14.63
SST                                                         4.86                            5.50 to 13.74                            12.23 to 13.74                             5.50 to 7.96
SLA                                                        1.30                               -51 to -28                                -36.4 to -28                              -51 to -48.56
Depth                                                      1.40                            3.45 to 189.8                            98.42 to 189.8                           93.04 to 189.8
TOM (%)                                                1.46                             1.79 to 4.46                               1.79 to 2.48                  1.79 to 2.43 and 3.64 to 4.46
Benthos biomass                                     1.31                           4.63 to 151.78                            4.63 to 44.25                             4.63 to 66.88
Sand (%)                                                 1.79                            2.35 to 44.85                            36.26 to 44.85                           28.91 to 44.85

Spring
Chla                                                        1.25                             0.90 to 6.32                               5.38 to 6.32                               2.26 to 6.32
PAR                                                        4.48                            4.73 to 57.28                            55.40 to 57.28                          53.668 to 57.28
SST                                                         3.23                            17.5 to 23.67                             19.62 to 22.8                            20.49 to 23.67
SLA                                                       11.28                               -21 to -9                                    -14 to -9                               -15.66 to -9.48
Depth                                                      1.41                              5 to 281.25                                5 to 175.21                                5 to 130.57
TOM (%)                                                2.43                             1.87 to 4.63                               1.88 to 3.57                                1.87 to 2.9
Benthos biomass                                     1.69                           7.92 to 174.94                          19.73 to 105.77                          34.91 to 97.33
Sand (%)                                                 3.71                            7.07 to 42.51                            31.77 to 42.51                           38.21 to 42.51
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215Habitat suitability of Caspian Shad

Fig. 2. The winter suitability index curves of NPUA- and CPUA-based models derived from spline smooth regression method of each
environmental variable.
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Fig. 3. The spring suitability index curves of NPUA- and CPUA-based models derived from spline smooth regression method of each
environmental variable.
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HSI values) were calculated to be 0.37 and 0.55 during
spring and winter, respectively (P<0.05). In addition, the
correlation coefficient between two variables (average
NPUA against the HSI values) were registered to be 1.00
and 0.57 during spring and winter, respectively (P<0.05).
The average NPUA of both seasons increased with the
HSI; areas with an HSI of between 0.4 and 0.6 in spring
and between 0.6 and 0.8 in winter had a high percentage
of total catch. 

Although a high percentage of total catch was caught
in areas with an HSI of between 0.4 and 0.6, the NPUA
exhibited higher values in areas with an HSI of more than
0.6, indicating that these areas are suitable habitats for Ca-
spian shad in spring (Fig. 5). According to NPUA-based
HSI modeling, Caspian shad have a seasonal preference
of suitable areas regarding key explanatory variables in
the southern Caspian Sea. Unfortunately, no sampling was
conducted in areas with an HSI of more than 0.8 in both
seasons and less than 0.2 in spring. Our results suggested

that the AMM in spring and the GMM (or MIN) in winter
based on NPUA data would reasonably predict suitable
habitats for Caspian shad in the southern Caspian Sea.

DISCUSSION

The present study described the most preferred seaso-
nal habitat and optimal environmental range of the Ca-
spian shad by using HSI models. There were lack of
available data on the biology, ecology, and habitat of the
Caspian shad in the southern of Caspian Sea. Our results
showed that the Caspian shad preferred different environ-
ments depending on the season. The fish preferred deep
waters with low TOM and SLA levels in winter and pro-
ductive areas with high Chla and benthos biomass in
spring. In winter, for the NPUA-based analysis, although
the GMM had the lowest AIC, the AIC for the MINM was
within 2 value, which is a negligible difference (Fotherin-
gham et al., 2003); thus the data provides approximately
equal support for these two models. For spring, the AMM

Tab. 3. Forward stepwise selection of variables and the goodness of fit (AIC) test for selecting the most accurate model (top-ranked
models) in winter.

NPUA-based                                                                        CPUA-based
Variable(s) in model                Model            AIC             ∆AIC                               Variable(s) in model                 Model            AIC             ∆AIC

SLA, depth, TOM                      GMM            25.56             0.00                                Ben, depth, sand, Chla               AMM            28.42             0.00
SLA, depth, TOM                       MIN             26.63             1.08                                Ben, depth, sand, Chla               GMM            28.52             0.09
SLA, depth, sand                       AMM            32.63             7.07                                Ben, depth, sand                         AMM            30.87             2.45 
SLA, depth                                 GMM            32.91             7.36                                Ben, depth                                  AMM            31.84             3.42
SLA, depth, sand                        MIN             33.48             7.92                                Ben, depth, Sand, Chla               MIN             32.61             4.19
SLA, depth, TOM, sand              MIN             33.89             8.33                                Ben, sand                                    AMM            34.26             5.84
SLA, depth, TOM                      AMM            34.12             8.56                                Ben, depth, sand                         GMM            34.37             5.95
SLA, depth                                 AMM            34.34             8.79                                Ben, depth                                  GMM            35.99             7.57
SLA, depth, TOM, sand             AMM            34.78             9.22                                Ben, sand                                    GMM            37.94             9.52
SLA, depth, TOM                       CPM             35.04             9.49                                Ben                                                                   40.14            11.72

Tab. 4. Forward stepwise selection of variables and the goodness of fit (AIC) test for selecting the most accurate model (top-ranked
models) in spring.

NPUA-based                                                                        CPUA-based
Variable(s) in model                Model            AIC             ∆AIC                               Variable(s) in model                 Model            AIC             ∆AIC

Ben, Chla                                  AMM           -22.97             0.00                                Ben, sand                                    AMM           -19.36             0.00
Ben, Chla                                   GMM           -22.53             0.44                                Ben, Chla                                   AMM           -19.19             0.16
Ben, Chla, TOM                        GMM           -20.92             2.05                                Ben, Chla, TOM                          CPM            -18.88             0.48
Ben, Chla, TOM                        AMM           -19.94             3.03                                Ben, sand, Chla                          AMM           -18.87             0.48
Ben, Chla                                   CPM            -17.68             5.29                                Ben, Chla                                   GMM           -18.78             0.58
Ben, Chla, TOM                         CPM            -17.65             5.31                                Ben                                                                  -18.61             0.75
Ben, Chla, Sand                         AMM           -17.04             5.92                                Ben, TOM                                   AMM           -18.49             0.86
Ben                                                                  -16.28             6.68                                Ben, Chla, TOM                         AMM           -18.46             0.89
Ben, Chla, Sand                         GMM           -15.87             7.10                                Ben, Chla                                    CPM            -18.29             1.07
Ben, depth                                   CPM            -15.68             7.29                                Ben, Chla, TOM                         GMM           -17.57             1.79
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Fig. 4. The spatial distribution of (a) the NPUA-based GMM HSI and the measured NPUA in winter 2011and (b) the NPUA-based
AMM HSI and the measured NPUA in spring 2010.

Tab. 5. Compared errors of selected NPUA-based models derived from goodness of fit (AIC) selection in winter and spring.

Model (parameters)                                                                                                       RSS                    MSE                  RMSE                     R

Winter
NPUA-based GMM HSI (SLA, depth, TOM)                                                             85.93                    0.82                     0.91                     0.74

Spring
NPUA-based AMM HSI (Ben, Chla)                                                                          17.41                    0.36                     0.60                     0.77
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219Habitat suitability of Caspian Shad

(or GMM) in NPUA-based HSI modeling was the most
accurate model in predicting Caspian shad habitat by
using benthos biomass and Chla. In contrast to winter, the
fish preferred areas with high Chla and benthos biomass
in spring. Alosa species in the Caspian Sea migrate sea-
sonally to warmer and deeper water in winter and shallow
water in spring for feeding and reproduction (Coad, 1995,
1997). Afraei Bandpei et al. (2006) reported that substrate
type and temperature mainly affect the distribution of
Alosa spp., with sandy substrates preferred by these fish.
No studies have clearly determined how environmental
effects influence fish distribution; however, our work de-
monstrates how fish might respond to environmental va-
riables seasonally.

Chlorophyll is a proxy of biological productivity index

in that it reflects the standing stock of phytoplankton in
surface waters (Bellido et al., 2008), which indicates ma-
rine productivity hotspots (Valavanis et al., 2004) and can
describe the habitat productivity of fish species (Chassot
et al., 2011). Furthermore, the Chla index enables the cha-
racterizing of animal habitats (Polovina et al., 2000; Ko-
bayashi et al., 2008) and is widely used in fish habitat
modeling (Crec’hriou et al., 2008; Valavanis et al., 2008;
Haghi Vayghan et al., 2015). The Caspian shad in the sou-
thern Caspian Sea typically feed on zooplankton, phyto-
plankton, and benthic communities (e.g., small fish, crab,
shrimp, and benthic invertebrate); their intensive feeding
period begins after reproduction ends in June (study time)
(Abbasi and Sabkara, 2004; Abdollapour et al., 2007;
Coad, 2014). However, examining environmental varia-

Fig. 5. The fluctuation of HSI values derived from the selected model, and the average NPUA (a, c) and percentage of total catch (b, d)
in winter and spring, respectively.
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bles by using the AMM (or GMM) with NPUA-based
HSI models and the pattern of environmental variables in
the SI curves contributed to the literature by determining
Caspian shad spring habitat preferences in the southern
Caspian Sea.

According to the NPUA-based GMM, Caspian shad
preferred deeper, offshore waters and areas with less TOM
and negative SLA (anticyclonic current). The SIs revealed
that the fish selected deeper areas in offshore waters with
lower TOM, benthos biomass, and Chla levels. As a win-
tering location of numerous fish species, deep water na-
turally has a low concentration of nutrients and organic
matter (Damalas et al., 2010) and have been influenced
suitable habitat of some fish such as Caspian kutum in the
Caspian Sea (Haghi Vayghan et al., 2013, 2015). Caspian
shad prefer wintering in deeper waters in the southern Ca-
spian Sea (Coad, 1995; Coad, 1997; Afraei Bandpei et al.,
2006), where temperature at deep water was at least two
degree more than other season in the southern of Caspian
Sea at winter time (Nasrollahzadeh et al., 2013). The role
of SLA has been demonstrated in fish habitat modeling
(Valavanis et al., 2008) as describes ocean processes (Lar-
nicol et al., 2002; Pujol and Larnicol, 2005), being useful
in measuring productivity, and often influencing the di-
stribution of species throughout their life stages (Gian-
noulaki et al., 2008). Furthermore, SLA was found to be
a predictor in fish habitat studies in the southern Caspian
Sea (Haghi Vayghan et al., 2013) and Mediterranean Sea
(Crechriou et al., 2008; Tserpes et al., 2008). 

However, discrepancies in the SI of SLA and some va-
riables (e.g., SST) in the NPUA- and CPUA-based HSI mo-
dels in winter may be closely related to differences between
NPUA and CPUA at the same sampling point (Fig. 2). A
specific point (trawling station) with a low CPUA value may
have a high NPUA value simultaneously as a result of a high
abundance of small fish. Hence, areas with similar NPUAs
and a high SI value in an NPUA-based model may exhibit
a high abundance of small fish simply because they are pre-
ferred areas with low current speeds, low SLA, or even high
SST; the inverse may be true for CPUA-based SI. Further-
more, the dominant current direction in the southern Caspian
Sea is anticyclonic (negative SLA) (Gunduz, 2014) and Ca-
spian shad may prefers low currents to save energy in win-
ter, when food is scarce (Coad, 1995, 2014). 

Interest is growing in species distribution modeling
(Hirzel et al., 2006) and many methods have been used
to study the distribution of fish relative to explanatory va-
riables (Guisan and Zimmermann, 2000; Brotons et al.,
2004; Guisan and Thuiller, 2005; Elith et al., 2006; Au-
stin, 2007; Valavanis et al., 2008). HSI models summarize
the relationship between species and their habitat, and
analyze essential characteristics of suitable habitats that
are correlated linearly with carrying capacities (Zohmann
et al., 2013). Equal influence, the independent inclusion

of variables in model when defining habitat quality (Song
and Zhou, 2010), and rapid habitat assessment tools ena-
ble HSI models to yield more accurate and realistic results
compared with those obtained using statistical methods
(Li et al., 2014). Several methods have been applied to
determine SI curves illustrating the relationships between
SIs and environmental variables. The SI curves could be
defined according to expert knowledge (Brown et al.,
2000) or a piecewise linear function (Vincenzi et al.,
2007), quantile regression (Feng et al., 2007), spline smo-
oth regression and nonlinear regression (Chen et al., 2009;
Tian et al., 2009), cubic spline smoothing function (Chang
et al., 2012), or fuzzy chart analysis (Zohmann et al.,
2013). Nonlinear spline smooth regression method has
been the most widely used method of quantifying SI cur-
ves worldwide (Chen et al., 2009; Tian et al., 2009; Chang
et al., 2013; Li et al., 2014), including for Caspian Sea
studies (Haghi Vayghan et al., 2013).

The selection of the four empirical HSI models and
cautious combining of the various SIs was conducted ac-
cording to their compensatory nature of the model fun-
ction (Van Horne and Wiens, 1991) and even species
ability to respond to habitat changes. For example, an ari-
thmetic mean of SI scores is used in scenarios involving
habitat variables with highly compensatory effects. By
contrast, limiting or critical factors are represented using
the geometric mean model (Brown et al., 2000; Zohmann
et al., 2013). Therefore, generally, defining a HSI model
could almost clear the target species reaction (it meant if
the model results uncover that geometric mean model is
the best selection, thus decision makers ought to consider
that those selected variables playing as limiting or critical
factor in fish habitat selection) or strategies to selected en-
vironmental variation in its habitat to finally apply appro-
priate policies for current or future management.
Modeling suitable habitats by using remote sensing and
field data may be problematic because the delineation of
modeling results depends heavily on the accuracy of the
data, and the scale on which a study is conducted can in-
fluence the results (Zohmann et al., 2013). The HSI ap-
proach has been criticized in the ecological field because
it considers only environmental characteristics and a mul-
titude of factors that influence the distribution and abun-
dance of a species (Angelstam et al., 2004) or factors
corresponding to specific habitat features [e.g., predation
avoidance [(Říha et al., 2014), competition, and climatic
stochasticity] that are partly beyond human control (Zoh-
mann et al., 2013); however, the HSI is still useful for
simplifying operational planning purposes. Although the
HSI models used in this study had several advantages,
some limitations were also present, namely that the rela-
tionship between carrying capacities and HSI was linear,
the geographic scope of study was small, neither age nor
size was assessed in SI development, and the variables in-
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cluded in the models were independent and exerted equal
influence (weight) in defining the habitat quality of Ca-
spian shad. Overall, by using habitat-monitoring tools and
defining the spatio-temporal extent of suitable habitat of
fish species, effective fisheries management policies can
be easily devised for not only the Caspian Sea but other
ecosystem worldwide. Defining the habitat needs of the
target fish would enhance local fisheries performances
and the long-term conservation planning of the fish to im-
plement the EBFM in the world’s largest lake, the Caspian
Sea. As an example, improvement of the state of Alosa
species in the Caspian Sea will require coordinated activ-
ities between the counties that are sharing fish stocks.
Their local fisheries activities would have to become har-
monized to achieve optimal fish stock management and
sustainable exploitation that the coordinated management
and protection of nursery grounds, seasonal habitat pref-
erences and prevent further damages to essential habitats
in near to countries shallow waters is needed. Further-
more, the long-term monitoring and management of
human driven impact (e.g., climate change and pollutions)
may aid in slowing the change and destruction of ecosy-
stems. However, the model we applied can be implemen-
ted easily for spatially explicit habitat suitability
assessment and is an effective tool for planning and mo-
nitoring Caspian Sea ecosystem.

CONCLUSIONS

In this study, we used NPUA and CPUA data as abun-
dance index and remote sensing and field data to quantify
four empirical HSI models for the Caspian shad in the
southern Caspian Sea. The NPUA was determined to be
more reliable than the CPUA for use as the abundance
index in Caspian shad HSI modeling. The average NPUA
in both winter and spring increased with the HSI; areas
with an HIS of between 0.4 and 0.6 in spring and between
0.6 and 0.8 in winter gained high percentage of total catch.
Although a high percentage of total catch was caught in
areas with an HSI of between 0.4 and 0.6, the NPUA was
higher in areas with an HSI of more than 0.6, indicating
that these areas are suitable habitats for Caspian shad in
spring. Areas with an HSI of more than 0.5 had over 91%
and 63% of the total catch in spring and winter, respecti-
vely; supporting the reliability of the NPUA-based HSI
model’s prediction of Caspian shad habitat. Moreover, the
AMM (or GMM) in spring and the GMM (or MIN) in
winter yielded reliable predictions of suitable habitats, in-
dicating that the predictors used in the models could be
considered critical factors for the fish in different seasons.
The present study also showed that field data (bathymetry
and substrate structure) plus SLA and Chla are the most
important environmental variables in the HSI modeling
of the Caspian shad in the southern Caspian Sea. In remo-
tely sensed data, SLA and Chla had critical role in map-

ping suitable habitats. Nevertheless, knowing the seasonal
habitat suitability and SI of each environmental variable
of the fish in relation to the season and predictors could
be useful in implementing ecosystem-based management
(EBM) in the Caspian Sea, balancing local fishery mana-
gement, and preventing further damage to essential habi-
tats (e.g., nursery and feeding grounds), particularly in
spring when fish reside in shallow waters.
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