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INTRODUCTION

The populations of the freshwater crayfish Aus-
tropotamobius pallipes (Lereboullet, 1858) species com-
plex have undergone a remarkable contraction and decline
on a widespread basis in Europe (Holdich, 2002; Souty-
Grosset et al., 2006; Holdich et al., 2009), including Italy
(Aquiloni et al., 2010). This decline is due to causes fre-
quently linked to direct human action, such as habitat
fragmentation, deforestation and water deterioration
(Nardi et al., 2005; Trouilhe et al., 2007; Favaro et al.,
2010). Consequently, the species is listed in the EU Di-
rective 92/43/EEC, commonly known as Habitat Direc-
tive (Annex II and V) and it is also listed as endangered
by the IUCN (Füreder et al., 2010). Moreover, the cause
of disappearance of many freshwater crayfish populations
is linked (Gherardi and Holdich, 1999; Gherardi et al.,
2002) to the introduction of non-indigenous species, such
as Procambarus clarkii (Girard, 1852) and Orconectes
limosus (Rafinesque, 1817), carriers of the oomycete
Aphanomyces astaci Schikora 1906, the crayfish plague
(Aquiloni et al., 2011). Recent studies in its native habitat
showed that P. clarkii has distinct ecological requirements
with respect to A. pallipes (Dorr and Scalici, 2013) and
the propagule pressure drives the colonization success of
invasive freshwater crayfish (Capinha et al., 2013). There-
fore, suitable management strategies should be planned
to prevent the extinction of native crayfish populations
(Manenti et al., 2014). Actually, some management proj-

ects have been undertaken to conserve threatened popu-
lations of native crayfish in several European countries
(Bernardo et al., 1997; Dieguez-Uribeondo et al., 1997;
Holdich and Rogers, 1997; Whitehouse et al., 2009; Pic-
coli et al., 2012; Berger and Füreder, 2013); but detailed
knowledge of growth dynamic of the species is important
for the definition of conservation actions and management
plans (Grandjean et al., 1997a). Studies of population dy-
namics can have a useful role in reintroduction pro-
grammes (Scalici et al., 2008). Therefore understanding
of the growth rate of a population can help to predict the
colonisation rate of a re-stocked waterbody, the minimum
number of individuals of selected ages to reliably estab-
lish a new population, and the time required before it is
likely to be detected by various survey methods. Accord-
ing to the Habitat Directive, EU member states are obliged
to maintain the protected species at or restore them to a
favourable conservation status (FCS). One of the first
steps for assessing the FCS is the understanding of popu-
lation dynamics, which must indicate good chances for
long-term species survival in its natural habitats (Mehtälä
and Vuorisalo, 2007).

Previous studies demonstrated a high variability in
growth parameters of A. pallipes complex (Lowery, 1988)
and growth rate affected by latitude (Vogt, 2012) showing
that the former increases with a decrease of the latter
(Scalici et al., 2008). Generally the growth rate of crayfish
is slow at low temperature, so growth slows or ceases in
winter. In oceanic or continental climates in higher lati-
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tudes or at higher altitude, crayfish grow more slowly than
in areas characterised by Mediterranean climate (Scalici
et al., 2008). Hence crayfish in streams in northern Italy
at the edge of the Alpine region are likely to grow more
slowly than those in low-lying areas of central and south-
ern Italy.

This study aimed to assess the population structure,
growth and mortality rates of the white-clawed crayfish
A. pallipes complex in northern Italy by applying fish
stock assessment principles. The lack of stable skeletal
structures, e.g. the growth rings on scales of fish (Hartnoll,
2001), complicates the estimation of age, growth and mor-
tality in all crustaceans (France et al., 1991). The use of
size-frequency distributions to distinguish among modal
size groups in order to estimate the rate of growth is a long
established method in aquatic sciences (Quinn and Deriso,

1999; Smietana and Krzywosz, 2006) as body length dis-
tributions within populations are quite easy to recover.

METHODS

Study area

The study was carried out in four high-gradient
streams belonging to the Po river basin, in the southern
part of the Alpine biogeographic region (Fig. 1). Each
studied stream has a population of white-clawed crayfish
A. pallipes complex. These sites are located in the altitu-
dinal range typical for A. pallipes complex in Lombardy
(Fea et al., 2006; Piccoli et al., 2012) and their values of
annual mean water temperature are similar (Tab. 1) and
optimal for the species (Souty-Grosset et al., 2006). More-
over, the studied streams are chosen within European pro-

Fig. 1. Streams of the present study and localities of previous studies in the contest of the EU biogeographical regions (http://www.eea.eu-
ropa.eu/data-and-maps/data/biogeographical-regions-europe).
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503Ageing Alpine populations of A. pallipes complex

tected sites (Natura 2000), surrounded by woodland in
order that anthropic disturbance as well as poaching ac-
tions on the crayfish populations can be considered min-
imised or null.

At each site a 100 m stretch representative of stream
features was selected, following the Rapid Bioassessment
Protocol (Barbour et al., 1999). A standard length of 100
m can be used to obtain a representative sample of stream,
because it includes an adequate mixture of habitats suit-
able for benthic macroinvertebrates (Barbour et al., 1999).

Data collection

In each stream the water temperature was recorded
during a period of 16 months using Tinytag® temperature
loggers (Gemini Data Loggers, UK Ltd., Chichester, UK)
at 2 h intervals (Tab. 1). Crayfish were caught in each
stream during 19-24 July 2012 within stable low flow
(range from 0.0005 to 0.0616 m3 sec–1). Crayfish were
caught at night by hand by a suitable number of experts
(from one to three, fit for the width of the streams) using
torches and walking upstream in order to collect as many
crayfish as possible (France et al., 1991; Smith et al.,
1996). Crayfish were sexed and sized considering
cephalothorax length (CL, from the tip of the rostrum to
the posterior median edge of the cephalothorax), using
digital calipers (accuracy±0.1 mm). Wet weight (±0.1 g)
was determined using handy spring balances and occur-
rence of mutilations was also recorded as well as absence
or malformation of the rostrum. At the end of each night
sampling, all crayfish were released at the collection area.

Because the hatching period had just ended (only a fe-
male with larvae was collected), we did not find the
young-of-the-year (YOY) during night sampling due to
their low movement capability (Gherardi, 2002) and their
elusive behaviour (Brusconi et al., 2008). Therefore in
order to fill this gap, daily samplings were conducted by
turning cobbles to find and measure the YOY.

Data analyses

For each night crayfish sampling, we calculated catch
per unit effort (CPUE, i.e., the number of crayfish divided

by the sampling effort, crayfish·min–1·expert–1; Quinn and
Deriso, 1999), density (crayfish·m–2) and biomass (total
weight of the captured crayfish divided by the area of each
stretch, g·m–2). Frequency data were analysed separately
for females and males. Because CL is a more reliable
measurement due to rigid structure of cephalothorax in
contrast to the flexible abdominal joint (Pratten, 1980),
only the CL measurements were used to generate his-
tograms of polymodal frequency distributions, using 1
mm CL intervals (Scalici et al., 2008). However, all cray-
fish without rostrum or with malformation of the rostrum
were excluded. Frequency distributions were analysed
using Bhattacharya’s (1967) Method (BM), included in
the FAO-ICLARM Stock Assessment Tools (FiSAT) soft-
ware (Gayanilo et al., 1996). This procedure enables the
decomposition of mixed frequency distributions into their
Gaussian components, i.e. the identification in cohorts
from a complex distribution of length-frequencies.

The separation of length-frequency samples into their
component is an iterative process in that every identified
component is subtracted from the remainder of the sam-
ple; BM linearizes the normal distributions by computing
the natural logarithms of the frequencies. The process is
continued until all groups are identified; up to 10 groups
can be identified per sampling period. For each Gaussian
component the program provides the mean, the standard
deviation and the theoretical number of individuals per
group, and a separation index value (SI) for two succes-
sive groups. Two adjacent Gaussians can be separated
when SI ≥2 (Sparre and Venema, 1996). At the end of this
analysis, an arbitrary age was assigned to each cohort, so
the mean of each Gaussian and the age constitute a set of
age classes from which it is possible to derive the growth
parameters. In order to ascribe an age to each length class,
water temperature data have to be considered as well as
degree-days required to birth time and hatching periods
(Hartnoll, 2001). Indeed, it is well known that, in temper-
ate waters, the growth of aquatic invertebrates shows
strong seasonal oscillations mainly due to fluctuations of
temperature and/or food supply (Pauly et al., 1992; Bilgin
et al., 2009). In crayfish, after spawning during the incu-

Tab. 1. Climate features of the studied streams (water flow measurements are referred to the crayfish sampling days).

Stream                                    Watershed            Altitude               Annual             Range (°C) Daily mean water                  Water flow
                                                                               (m asl)             mean water        (Sept. 2011 - temperature >10°C                 (m3·sec –1)
                                                                                                       temperature        Sept. 2012)             N days                  mean
                                                                                                              (°C)

Des (DES)                               Po - Olona                 564                       9.6                  0.6 - 18.9                  173                      14.1                   0.0006
Droanello (DRO)                    Po - Mincio                578                       9.5                  0.3 - 17.4                  169                      14.2                   0.0616
Giongo (GIO)                           Po - Adda                 362                       9.0                  0.3 - 19.6                  177                      13.4                   0.0021
Freddo (FRE)                           Po - Adda                 350                      11.3                 0.8 - 21.8                  228                      14.9                  <0.0005
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bation period the eggs are brooded by the female and the
time until hatching is affected by temperature as degree
days. Assuming a spawning date of mid-November (ac-
cording to previous field and laboratory observations by
the authors) and considering 1391 CTU (Celsius Temper-
ature Units, degrees x days; 193 days at mean water tem-
perature of 7.1°C±3.8) according to a study conducted in
the same geographic area (Ghia et al., 2011), for each
population the date of eggs hatching was computed in re-
gard to water temperature data set (Fig. 2). After deter-
mining the date of egg hatching for each population, an
age expressed in months was ascribed to each length class.
Datasets smaller than about 100 could not discriminate
even the number of age components existing in the sample
(France et al., 1991), but several studies used successfully
smaller datasets when dealing with threatened or endan-
gered species (Bjorndal et al., 1995; Salvidio and De-
laugerre, 2003; Brusconi et al., 2008).

The mean values of the age classes were used to eval-
uate the von Bertalanffy (1938) growth function (VBGF)
for each sex by the seasonally oscillating equation (Pauly
and Gaschütz, 1979):

L(t)=L∞{1–exp [-k (t–t0) - (Ck/2π) sin(2π (t–ts))]}  (eq. 1)

where L(t) is the length at age t; L∞ is the asymptotic
length; k is the growth constant (the rate at which L∞ is
reached, i.e., the curvature parameter); t0 called the initial
condition parameter determines the point in time when
the crayfish has zero length (biologically this has no
meaning because at hatching the larvae have a certain

length); C is the amplitude of the curve (it measures the
size of the seasonal variation in growth. When C=0, the
equation has no seasonal variation and is the same as the
von Bertalanffy. The higher the value of C, the more pro-
nounced are the seasonal oscillations. When C=1 the
growth rate becomes zero during the winter or other low
growth season); ts is the summer point (the time between
t=0 and the start of a growth oscillation. It helps to define
ts+0.5=tw, which expresses the winter point, as a fraction
of the year, the period when growth is slowest). Because
the only parameter which cannot be estimated directly
from the seasonally oscillating growth data is L∞ (Pauly
and Gaschütz, 1979), a preliminary value of L∞ is com-
puted by the relationship proposed by Taylor (1962) and
Beverton (1963):

L∞=Lmax /0.95                                                           (eq. 2)

Moreover, in order to compare the growth parameters
resulting from this study to others reported for the white-
clawed crayfish in literature, the growth performance
index φ’ (Pauly, 1979; Munro and Pauly, 1983) was com-
puted as:

φ’=log k+2 log L∞                                                                                     (eq. 3)

This index assumes a nearly constant value within
populations of the same species, even if the growth dy-
namics seem very different. According to Moreau et al.
(1986), it supplies a test for the reliability of the growth
curves due to a lowest variability of values within popu-

Fig. 2. Water temperature of the study streams over the period 1st September 2011- 31st December 2012. Main phases of A. pallipes
complex reproduction and grow period are shown.
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505Ageing Alpine populations of A. pallipes complex

lations of the same species. In addition, the total mortality
index (Z), i.e. the sum of natural mortality (M) and the
mortality due to fishing (F), was obtained using the Pow-
ell-Wetherall plot equation (Wetherall, 1986). It calculates
the ratio between the mortality coefficient and the curva-
ture parameter (Z/k) using length frequency data.

M was calculated by the following equation (Pauly,
1980):

log M=-0.0066 -0.276 log L∞+0.6543 log k+0.463 log T
                                                                               (eq. 4)

where M is the natural mortality, L∞ is the asymptotic
length, k is the curvature parameter, and T is the annual
mean habitat temperature of the water in which crayfish
live. F was obtained subtracting M from Z. Finally, the
expected longevity (tmax) was estimated using the follow-
ing equation:

tmax=3/k+t0                                                                                                         (eq. 5)

Statistical analyses

Frequency data were analysed after using a χ2-test.
Von Bertalanffy’s parameters were computed using non-
linear regressions. Non-parametric statistical tests were
carried out when the scores did not meet the requirements
for a normally distributed population (Sokal and Rohlf,
1995). Statistical differences were detected with a level
of significance P<0.05 and they were performed with
SPSS software (ver. 13.0).

RESULTS

Overall 746 crayfish (352 males and 394 females)
were collected. For each studied stream, the resulting pop-
ulation structure is shown in Tab. 2.

Females were significantly more abundant than males
in only one population (χ2=7.471, df=1, P=0.006), while
the sex ratio did not deviate from 1:1 in the remaining
three ones. Abundance assessment (CPUE), density and
biomass ranged in 0.45-1.37 crayfish·min–1 expert–1, 0.72-
4.48 crayfish·m–2 and 4.39-29.08 g·m–2 respectively.

Length-frequency distributions obtained using 1 mm

CL interval are shown for each sex and stream (Fig. 3).
The BM analysis identified up to six age classes (Tab. 3)
in two populations (DES and DRO). The class 0+ was not
represented, because only few YOY were caught. Esti-
mating from water temperature data of each stream and
from the required degree days, hatching period occurred
roughly in late May in FRE stream, in mid-June in DES
and DRO, and in late June in GIO (Fig. 4). As these
streams, located in the southern part of the Alpine bio-
geographic region, have similar climatic characteristics
(Tab. 1), they have the same effect on the growth rate of
the studied populations, thus we assigned the same asymp-
totic length. Crayfish CL means were pooled, taking into
account the shift of hatching periods among streams. So
single growth curves for males and females were plotted
in Fig. 5. In order to best-fit the curve, in this analysis we
considered the CL of the few YOY caught during the day-
light. Resulting VB’s parameters, details of mortality and
growth performance index φ’ are given in Tab. 4 and they
are compared with data reported in literature in Tab. 5.

After ascribing age to the crayfish according to VB’s
parameters, males are significantly longer than females of
the same age, starting from the second year (1-year old:
t=1.500, df=183, P=0.135; 2-year old: t=3.272, df=191,
P=0.002; from 3-year old onwards: always P<0.0001).

DISCUSSION

Length-frequency data have been used mostly for the
management of exploited marine and freshwater fish and
aquatic invertebrate stocks (Pauly and Morgan, 1987;
Rosenberg and Beddington, 1988; Fournier et al., 1998)
or for the monitoring strategies of invasive alien species
(Anastácio and Marques, 1995; Fidalgo et al., 2001;
Chiesa et al., 2006). In this study we showed that modal-
progression analysis is a useful approach as a source for
obtaining basic information necessary to assess popula-
tion structure of species of conservation interest (Bjorndal
et al., 1995; Salvidio and Delaugerre, 2003; Brusconi et
al., 2008). Indeed, conservation and reintroduction strate-
gies ideally require characterization of donor populations
regarding growth curves and size and age at sexual matu-
rity (Grandjean et al., 1997a). Size-frequency distribu-

Tab. 2. Features of the population structure for each stream.

Stream                                            N                         M                         F                    Sex ratio               CPUE                Density               Biomass
                                                                                                                                                          (ind·min–1 expert–1)    (ind·m–2)               (g·m–2)

Des                                                225                       92                       133                     0.69*                     1.37                     4.48                     29.08
Droanello                                       342                      171                      171                        1                        0.65                     0.72                      4.39
Giongo                                          106                       54                        52                       1.04                     0.45                     0.91                      7.75
Freddo                                            73                        35                        38                       0.92                     0.71                      2.1                       9.15
N, sample size; M, males; F, females; CPUE, catch per unit effort;*Significant difference (P<0.05) from the expected 1:1.
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tions and estimates of growth parameters are known to be
potentially affected by the selectivity of the sampling gear
used to collect the animals (Montgomery et al., 2010). In
order to avoid this bias, we chose to adopt hand sampling
by experienced researchers, which is one of the less-se-
lective capture methods for large crayfish (Peay, 2004),
and allowed us to obtain a large data set collected within
a very short time (only few hours) at night, when crayfish
activity was similar in size class, temperatures and sexes
(Barbaresi and Gherardi, 2001). The YOY (0+ class) did
not occur in the frequency distributions since hatching
took place some weeks before sampling and the independ-
ent juveniles were still too small to be captured (Bernardo
et al., 1997) or were still adopting an elusive behavior,
which made them difficult to find (Brusconi et al., 2008).

To date, no other study on A. pallipes complex popu-
lations’ structure and growth had been previously per-
formed in the Alpine biogeographic region. Our data
confirmed that the studied populations kept a well-struc-
tured age-class composition, achieving up to six classes
both for males and females in DES stream. The only ex-
ception was the FRE population, which had only three
classes in both sexes. A possible explanation might be the
extreme environmental conditions of that stream. Indeed,
the very low and almost intermittent flow (Tab. 1) could
not be suitable to sustain regular population dynamics. It
is interesting to note that this is the stream with the earliest
estimated hatching date, maybe because shallow streams
warm up more quickly than those with greater base-flow,
but they are also more at risk of drying out. Our findings

Fig. 3. Length-frequency histograms of females (on the left) and males (on the right), obtained using 1 mm CL intervals (CL, cephalotho-
rax length).
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are in line with Scalici et al. (2008) who obtained up to
seven classes for males in Latium streams and with Brus-
coni et al. (2008) who found five classes for females in
Tuscany watercourses. Growth parameters confirmed that
A. pallipes complex is a K-selected species, with a slow
growth rate and a very long life expectancy, showing that
both sexes did not grow in winter. Studies on A. pallipes
complex populations in other European districts showed
statistical differences in growth rate due to latitude
(Scalici et al., 2008). Indeed our findings are more con-
sistent with A. pallipes populations in England (Pratten,
1980) than those in central Italy (Scalici et al., 2008). Cur-
vature parameters found for males and females, 0.16 and
0.19 respectively, are the lowest hitherto recorded for the
species. The principal factor governing growth rates ap-
pears to be temperature (Lowery, 1988). Growth is limited
to the period when water temperature exceeded 10°C
(Pratten, 1980). Indeed our streams recorded on average
187 days with water temperature >10°C (mean 14.2°C)
compared to the 192 ones (mean 16.2°C) recalculated
from Pratten (1980) who worked on a southern English
population. Therefore our findings pointed out the Alpine
climatic zone as altitudinal limit for this species.

To date, no other study is comparable to our, because
water temperature values were not logged systematically,
as we did in our study. Several studies (see Hartnoll, 1982)
indicated that seasonal oscillation in growth of crayfish is
correlated to seasonal variation in water temperature. This
trend of seasonal variation in growth is well expressed by

the C values obtained for both sexes, which reach the
maximum (C=1, i.e., no growth in winter and maximum
rate of growth in summer). The almost null growth rate
coincides with the November-March period, when tem-
perature remains below 9°C, and the winter point occurs
in the month of January. Growth rate is highest during the

Tab. 3. Means and standard deviation of the cephalothorax length, and Separation Index for each age class obtained by the application
of the Bhattacharya method.

Stream                                  Age (months)                                        Males                                                                         Females
                                                                                    N                  MCL (SD)                  SI                         N                  MCL (SD)                  SI

Des                                                 13                       19.4                  12.5 (1.23)                 -                        16.2               11.75 (0.73)                  -
                                                       25                       14.9                21.15 (0.98)              3.01                     41.6               18.85 (1.87)               2.72
                                                       37                       19.9                  31.5 (1.2)                2.74                     29.3               26.31 (1.86)               2.36
                                                       49                        3.2                 35.29 (0.57)              2.12                     10.2               29.99 (0.46)                2.1
                                                       61                        6.7                   39.5 (1.2)                2.14                     16.2               33.92 (0.77)               2.18
                                                       73                        6.3                   42.5 (1.59)              2.01                     10.9                 36.1 (1.4)                 2.04
Droanello                                        13                       30.2                14.69 (1.05)                 -                        50.1               14.78 (2.12)                  -
                                                       25                       29.2                21.05 (0.81)              2.57                     37.4               21.03 (1.35)               2.33
                                                       37                       16.1                27.09 (0.77)              2.41                     30.5               27.83 (0.95)                2.4
                                                       49                       12.7                     32 (0.99)              2.23                     48.3               31.56 (1.19)               2.11
                                                       61                       22.4                38.41 (1.23)              2.25                      5.8                35.68 (1.09)               2.11
                                                       73                       10.4                43.01 (0.67)              2.14                        -                           -                            -
Giongo                                          24.5                     12.6                     21 (1.2)                   -                         6.6                21.77 (0.82)
                                                     36.5                      5.0                 25.05 (0.64)               2.2                      10.3               24.52 (0.84)                2.1
                                                     48.5                      9.5                 31.26 (0.69)              2.38                     12.4               27.51 (0.78)               2.11
                                                     60.5                      6.5                 35.23 (0.81)              2.15                     10.2               33.83 (1.2)                 2.31
                                                     72.5                     10.6                38.51 (1.3)                2.07                        -                           -                            -
Freddo                                           13.5                      7.4                      18 (0.56)                 -                         6.6                  16.5 (1.2)                    -
                                                     25.5                     15.8                     22 (0.67)               2.3                      15.4               20.78 (1.22)               2.21
                                                     37.5                      5.3                      28 (0.67)              2.41                      5.1                25.04 (0.65)               2.22

N, theoretical number of the crayfish; MCL, means of cephalothorax length; SI, Separation Index.

Fig. 4. Cumulative degree days during egg-bearing period in the
study streams. Dot-dashed line shows the threshold of total de-
gree-days required to hatching.
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summer period. The summer point (i.e., maximum rate of
growth) occurs in July, when the average water tempera-
ture is 16°C, the optimum for the species (Arrignon,
1996). This is also the period when also adult females
moult, after releasing their young (Lowery, 1988), which
occurs in June in the Alpine biogeographic region. Values
of the growth performance index for both sexes agreed
again with Pratten (1980) and also with Scalici et al.
(2008), even though they measured the carapace length
from the ocular hollow instead from the tip of the rostrum.
The index was slightly higher in females than males, as
reported by other previous studies (Pratten, 1980; Brewis
and Bowler, 1982; Hogger, 1984; Brusconi et al., 2008).
Differences between sexes in CL started from the second
year, whereas the smallest reproductive female, showing
whitened tissue on the abdominal somites (Reynolds,
2002), measured 27 mm in CL, hence corresponding to a
three years old individual. These results suggested that
sexual dimorphism starts before the attainment of sexual
maturity, as previously hypothesized by Grandjean et al.
(1997b). Accordingly, Brewis and Bowler (1982) also re-
ported that sexual maturity in A. pallipes in Northumbria
(Great Britain) is attained when the carapace length is 22-
27 mm, but the size matches to the fifth to sixth year of
life. It is very likely that maturity is related to size rather
than age in A. pallipes; the earlier maturity results from
higher growth rates in the warmer waters (Brewis and
Bowler, 1982).

Nonetheless, the analyses of size-frequency distribu-
tions provide a useful method for estimating age structure
of populations of long-lived species, especially when the
recruitment season is well defined (Hartnoll, 2001). Al-
ternatives proposed for estimating the age of crustaceans
(see Vogt, 2012) include the use of stable isotope ratios in
calcareous skeletons (Le Foll et al., 1989), the concentra-
tion of lipofuscin pigments in the brain (Sheehy, 1990;

Fig. 5. Seasonalized growth curves for females (D) and males
(), (CL, cephalothorax length).

Tab. 4. Von Bertalanffy’s parameters for A. pallipes complex males and females.

                          k                 CL∞                 t0                  tmax          C            tw                   r2                  φ’                  Z                  M                  F

Males              0.16             63.01             -0.67             17.85         1          0.58              0.98               2.8               0.39              0.27              0.12
Females           0.19             52.00             -0.73             15.06         1          0.58              0.98               2.7               0.48              0.32              0.16
k, curvature parameter; CL∞, mean length of old individuals; t0, initial condition parameter; tmax, expected longevity estimate; C, amplitude; tw, winter
point; φ’, growth performance index; Z, total mortality; M natural mortality; F, mortality due to poaching.

Tab. 5. Growth parameters of A. pallipes species complex (see also Fig. 1). k and CL∞ were obtained from Scalici et al. (2008); φ’
values have been computed using φ’=log k+2 log CL∞.

References                                                           Country                         Sex                                k                                 CL∞ (mm)                         φ’

Pratten (1980)                                                       England                            F                               0.26                                   45.60                           2.73
                                                                                                                     M                              0.21                                   54.20                           2.79
Brewis and Bowler (1982)                                   England                            F                               0.31                                   47.34                           2.84
                                                                                                                     M                              0.28                                   52.11                           2.88
Hogger (1984)                                                      England                            F                               0.25                                   51.44                           2.82
                                                                                                                     M                              0.23                                   55.12                           2.84
Scalici et al. (2008)*                                                Italy                               F                               0.41                                   39.03                           2.80
                                                                                                                     M                              0.35                                   42.40                           2.80
Brusconi et al. (2008)                                              Italy                               F                               0.37                                   52.11                           3.00
                                                                                                                     M                              0.34                                   57.89                           3.06

*Scalici et al. (2008) referred carapace length as from the ocular hollow to the terminal thorax portion.
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Belchier et al., 1998; Bluhm and Brey, 2001; Maxwell et
al., 2007) and the structure of the infra-cerebral organ
(Bazin, 1970). All these methods require the sacrifice of
individuals, which would not be acceptable in an endan-
gered species like A. pallipes.

Finally, our findings suggested that mortality in stud-
ied populations of A. pallipes is mainly due to natural
causes (M=69% and 67% in males and females respec-
tively), and only a portion is due to poaching. This result
contrasts with data reported for Tuscany, where illegal
fishing is one of the main causes of mortality for the
species (Renai et al., 2006). All the studied populations
are within European protected sites, Natura 2000. It is en-
couraging that the designation appears to be effective in
protecting white-clawed crayfish in these watercourses
and consequently it may be beneficial to improve and in-
crease the ecological network of these special areas for
the conservation of threatened species.

CONCLUSIONS

We highlight the importance of obtained results as
new data on Alpine populations of A. pallipes complex,
and also the benefits of such non-invasive approach in de-
termining important population characteristics (age and
growth rates) in this native species.

The need for long-term monitoring when dealing
with endangered species makes our results useful in de-
velopment of action and conservation plans of this
crayfish.
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