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A long-term multi-proxy record of varved sediments suggests climate-induced
mixing-regime shift in a large hard-water lake ~5000 years ago
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ABSTRACT

The long-term terrestrial and aquatic ecosystem dynamics spanning between approximately 6200 and 4800 cal BP were investigated
using pollen, diatoms, pigments, charcoal, and geochemistry from varved sediments collected in a large stratified perialpine lake, Lago
Grande di Avigliana, in the Italian Alps. Marked changes were detected in diatom and pigment assemblages and in sediment composition
at ~4900 cal BP. Organic matter rapidly increased and diatom assemblages shifted from oligotrophic to oligo-mesotrophic planktonic
assemblages suggesting that nutrients increased at that time. Because land cover, erosion, and fire frequency did not change significantly,
external nutrient sources were possibly not essential in controlling the lake-ecosystem dynamics. This is also supported by redundancy
analysis, which showed that variables explaining significant amounts of variance in the diatom data were not the ones related to changes
in the catchment. Instead, the broad coincidence between the phytoplankton dynamics and rising lake-levels, cooler temperatures, and
stronger spring winds in the northern Mediterranean borderlands possibly points to the effects of climate change on the nutrient recycling
in the lake by means of the control that climate can exert on mixing depth. We hypothesize that the increased P-release rates and higher
organic-matter accumulation rates, proceeded by enhanced precipitation of iron sulphides, were possibly caused by deeper and stronger
mixing leading to enhanced input of nutrients from the anoxic hypolimnion into the epilimnion. Although we cannot completely rule out
the influence of minor land-cover changes due to human activities, it may be hypothesized that climate-induced cumulative effects
related to mixing regime and P-recycling from sediments influenced the aquatic-ecosystem dynamics.
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INTRODUCTION 2011). By contrast, in urban, industrial, and agricultural
settings, the higher abundance of nutrient sources (munic-
ipal and industrial discharges, and runoff from agricultural
or urban lands) has often driven cultural eutrophication in
historical times (Lotter and Birks, 1997; Smol, 2008). In
such lowland anthropogenically impacted lakes, cultural
eutrophication often masks the influence of other factors
and hampers an assessment of the full ecosystem response
to natural environmental change (Battarbee and Bennion,

2011). In addition, trophic shifts do not occur frequently

Ecosystems can change rapidly in response to distur-
bances and theory suggests that such shifts can be attrib-
uted to alternative stable states (Scheffer and Carpenter,
2003). Past and present human activities are well known
to be drivers of such shifts (Bradshaw et al., 2005; Dea-
ring, 2008) and the likelihood of reaching ecological
thresholds may increase when humans reduce resilience
(Folke et al., 2004). However, there are several ecological

thresholds that may be reached in the absence of humans
(Willis et al., 2010), indicating that factors other than
human activities (e.g., climatic changes, volcanic erup-
tions) may play an important role in determining ecosys-
tem dynamics. The long-term dynamics, feedbacks, and
processes influencing trophic changes in temperate lakes
are areas of active research. Lakes in remote regions have
been comparatively less affected by direct human activities
in the past (Smol et al., 2005; Battarbee and Bennion,
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and standard ecological methods, such as experiments and
small-scale observations, may not be applicable to study
such large, infrequent phenomena (Genkai-Kato, 2007).
Paleolimnological indicators of environmental changes
(proxies) may instead help to investigate the speed and na-
ture of ecosystem responses in conditions when human ac-
tivities were not significantly affecting the environment.
Evidences from such long-term records suggest that cli-
matic changes can determine the emergence of ecosystem
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shifts in thermally stratified lakes. Still, the mechanisms
acting during such climate-induced shifts (and essentially
increasing phosphorus concentrations in the photic zone,
thus enhancing phytoplankton biomass) are not well un-
derstood or constrained. Whereas some studies highlighted
the role of nutrient inputs from external nutrient sources
(essentially from erosion of nutrient-rich soils) (Brauer et
al., 1999; Schmidt et al., 2002), others pointed out that
changes of mixing regime or of mixing depth may be im-
portant in changing nutrient concentrations in the photic
zone from internal sources (Smol and Boucherle, 1985;
Moser et al., 2002; Smol et al., 2005; Kirilova et al., 2009).
However, most of these long-term records refer to shifts
in response to high-amplitude climatic changes with asso-
ciated large land-cover changes that occurred at the tran-
sition between the late glacial and the Holocene. Instead,
responses to lower-amplitude Holocene climate variability
are receiving greater attention in recent years (Martin-
Puertas et al., 2012).

In this study, we analysed a short lake-sediment section
that showed a conspicuous diatom-assemblage shift at
about 4900 cal BP, i.e., before the onset of intensive agri-
culture and land use in the region (Tinner ef al., 1999; Fin-
singer and Tinner, 2006). The lake is a stratified hard-water
lake that contains varved sediments (Finsinger et al., 2006),
attesting to the fact that the lake is predisposed for strong
stratification due to its morphometry and wind shielded lo-
cation. It thereby provides the opportunity to investigate
the dynamics (speed and nature) of change in the aquatic
ecosystem in response to environmental changes at high
temporal resolution (here a sample spans 15 years). We
used pollen and charcoal to estimate changes in the terres-
trial ecosystem (vegetation changes and fire occurrence),
diatoms and pigments to characterize changes in the aquatic
ecosystem (phytoplankton assemblages, occurrence of
cyanobacteria and anaerobic sulphur bacteria), and geo-
chemical analyses of the sediments to estimate runoff and
to trace redox changes at the sediment-water interface. This
multi-proxy approach may allow the reconstruction of en-
vironmental changes integrating both changes in the terres-
trial and aquatic ecosystems.

METHODS
Site description

Lago Grande di Avigliana (353 m asl; 45°03°54”N,
07°23°12”E) is a ~0.8 km? large, 26 m deep hypertrophic
hard-water lake that is part of a complex hydrological
chain of four lake basins (Fig. 1), the two outer ones being
overgrown (Finsinger and Tinner, 2006). It is located at
the southwestern edge of the European Alps in a wind-
shielded position. The lake is believed to have been
amongst the most eutrophic lakes in Italy (n=147 lakes,
Tartari et al., 2004). Recent conservation measures, which

included the deflection of sewage discharge, had a posi-
tive effect on the lake’s water quality (Finsinger et al.,
2006). Lago Grande di Avigliana is at present monomic-
tic. Full circulation occurs only in late winter-early spring
(February-March) and the hypolimnion is partially reoxy-
genated; for example, in March 2002 oxygen saturation
at the lake’s deepest point reached 3.5 mg L!. Hypoxia
then increased progressively during thermal stratification,
reaching concentrations below 0.2 mg L' at the deepest
point of the lake between April-May and December
(www.arpa.piemonte.it/). At present, internal loading is at
least partly responsible for maintaining high nutrient con-
centrations in Lago Grande di Avigliana. When spring cir-
culation occurs, nutrients that accumulated in the anoxic
hypolimnion during stagnation are mixed into the photic
zone. Current spring TP and pH levels in the epi- and
monimolimnion are 56 and 90 ug L' and 8.2 and 7.7, re-
spectively. Highest TP concentrations occur near the sed-
iment-water interface in summer (up to 800 pg L™). In
late summer, cyanobacterial blooms often occur, which
then dominate the total phytoplankton assemblages (An-
abaena affinis reached abundance of ~85% in AD 1980)
(de Bernardi ef al., 1984). Climate is temperate without a
dry season and precipitation is about 800 mm year~! with
maxima occurring in spring and autumn. The catchment
vegetation is dominated by deciduous temperate trees
(Finsinger and Tinner, 2006).

Field and laboratory methods

Two sets of parallel sediment cores were obtained with
a piston corer operated from a floating platform (UWITEC)
in the central part of the basin (water depth: ~25 m; Fig. 1).
The core drives (3 m length, 5.7 cm in diameter) were cut
into 1 m long segments, transported to the lab, cut longitu-
dinally, photographed, and stored at ~4°C. Core segments
were visually correlated to each other to build a composite
sediment record and particular attention was given to the
correlation between segments that were analysed in this
study. The inorganic element composition of the sediments
in these segments was determined on unprepared core
halves using an ITRAX puX-ray fluorescence (uXRF) core
scanner (Croudace et al., 2006). The uXRF records are dis-
played as counts per second (cps). Colour images of the
core halves were transformed to greyscale images and a
greyscale profile was plotted with the ImageJ v1.410 soft-
ware (http://rsbweb.nih.gov/ij/).

Since sediments mostly consist of carbonate-rich, finely
annually laminated gyttja (Lotter, 1989; Fig. 2 A-C), a
floating chronology was established for the sediments in
two segments based on repeated counts of biogenic varves
according to Lotter and Lemcke (1999). The light/dark
couplets were counted in increments of 5 mm under a
stereomicroscope at 15x magnification and a composite
record was developed by synchronization of distinct
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marker beds and using uXRF records. The conspicuous
sediment-colour change (Fig. 2) broadly coincides with
the onset of the Fagus expansion, which is correlated to
the transition between pollen zones AVP-9 to AVP-10 in
the nearby Lago Piccolo di Avigliana pollen record
(Finsinger and Tinner 2006). Based on the depth-age
model in that record, the age of the sediment-colour tran-
sition in LGA is estimated at ~4915+200 cal yrs BP. The
sediments of two segments were first cut into contiguous
15-year slices and thereafter subsampled cutting polygons
of 1 cm? surface from each slice (Segerstrom and Ren-
berg, 1986), freeze-dried and processed for diatoms,
pollen, macrocharcoal, loss-on-ignition (LOI), and car-
bon-nitrogen ratio (C:N) analyses. A distinct (>2 cm thick)
turbidite in core AG10 (Layer C, Fig. 2) was excluded
from the analyses. Sediments from segment AG002-111
were sampled for pigment and LOI analyses, and there-
after used to prepare sediment-thin sections according to
Lotter and Lemcke (1999). For diatom analyses, samples
were treated with H,0, and HCI, and Naphrax® was used
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as mounting medium. At least 300 valves were counted
at 1000x magnifications to determine their relative abun-
dance (% diatom sum). Diatom concentrations were cal-
culated based on the sedimentation-tray technique
(Battarbee, 1973). Diatom taxonomy followed Krammer
and Lange-Bertalot (Krammer and Lange-Bertalot,
1999a, 1999b, 2000, 2004). Pollen samples were prepared
following standard methods (Finsinger et al., 20006),
stained, and mounted on microscopic slides. At least 300
grains have been identified and counted in each sample at
%400 magnifications. Pollen percentages were grouped as
arboreal, shrub, and herb taxa, and a subgroup of the latter
were summarized as anthropogenic-indicator taxa follow-
ing Behre (1981). Exotic marker grains (Lycopodium)
were added to the samples to allow the calculation of
pollen concentrations (Stockmarr, 1971). For the
macrocharcoal analysis, samples were treated with NaOCl
and NaOH, sieved under a gentle water jet, and charcoal
particles >160 um were enumerated under a stereomicro-
scope at x40 magnification, following Genries et al. (2012).
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Fig. 1. Maps with surface hydrology in the Avigliana region (left), lake bathymetry and coring locations (full circles) (right). Modified

from Finsinger et al., 2006.
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LOI was measured following Heiri e al. (2001) to estimate ground (C,,.,) components. As indicated by several lines
the amount of organic matter, the carbonate content, and of evidence, C,, represent local large fires that affected
the ignition residue (mostly containing clastic material and a great part of the catchment, whereas the C,,,, component
biogenic silica). To measure C:N ratios, organic carbon (C) rather reflects area burned within the entire charcoal-
and total nitrogen (N) were measured with an EA1110 el- source area (>10 km radius) (Higuera et al., 2007). The
ement analyzer (CE Instruments, UK). For pigments, a vol- macrocharcoal record was analysed with CharAnalysis
ume of 1 cm? of sediment was taken and stored at -20°C v1.0 (Higuera et al., 2009). To summarize the main pat-
before processing. Specific algal and bacterial pigments terns in the diatom, pollen, pigments, and pXRF datasets,
were measured as nanomoles per gram of organic matter we used indirect-gradient ordination. Both pollen and di-
(nmol g, ;') by ion pairing, reverse-phase HPLC (Man- atom datasets have short gradient lengths (0.8 and 2.1, re-
toura and Llewellyn, 1983; Lami et al., 2000). spectively) as estimated using Detrended Correspondence
Analysis (DCA), suggesting the use of linear-based ordi-
Numerical analyses nation methods such as Principal Components Analysis
Statistically significant zone boundaries in the diatom (PCA). PCAs of the diatom and pollen datasets were
and pollen datasets were determined using constrained hi- based on a covariance matrix (ordinary PCA), whereas
erarchical clustering of a distance matrix, with clusters for the pigment and uXRF datasets PCAs were based on
constrained by sample order, and comparing the disper- a correlation matrix (standardized PCA). The main signal
sion of the hierarchical classification to that obtained from captured by the PCA analyses was summarized plotting
a broken stick model (Bennett, 1996) with the rioja pack- the samples scores on PCA axis 1 in the stratigraphic plots
age (Juggins, 2012). (Fig. 3). Direct-gradient ordination by redundancy analy-
To estimate biomass-burning rates, the charcoal record sis (RDA) was conducted to determine which linear com-
was decomposed into charcoal peaks (C,.,) and back- bination of explanatory variables best explain patterns in
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Fig. 2. Images of the sediment (A-C), greyscale record (D), and (E) depth-age relationship based on varve counts. A, B) Enlarged mi-
croscopic images of thin sections under polarized light. C) Images of split-core halves and X-ray radiographs for the two cores. D) The
greyscale record is plotted only for sediment segment AG10-II (high values=light sediment colour, low values=dark sediment colour)
and is smoothed with loess [~100 yrs smoothing window (using 250 data points)]; sediment voids, marked as white bands in the X-ray
radiographs, were deleted before smoothing the greyscale record.
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diatom assemblages. The explanatory variables included
selected fossil pigments, pollen PCA axis 1 sample scores,
selected uXRF records, and charcoal-accumulation rates.
RDA was performed with forward selection of explana-
tory variables and Monte Carlo permutation test (with 999
unrestricted permutations) to determine a subset of vari-
ables that explained significant (P<0.05 with a Bonfer-
roni-type adjustment for significance level; Lotter et al.,
1997a) and independent amounts of variation in the di-
atom data. For this purpose, the pigment and uXRF
datasets were first linearly interpolated to annual resolu-
tion and then averaged (moving average; window width
=15 years) in order to obtain data matrices with the same
sampling resolution as the diatom, pollen, and macrochar-
coal records. All ordinations were run with Canoco v4.52
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(ter Braak and Smilauer, 2003) with square-root trans-
formed percentage data for diatom and pollen.

Cross-correlation analyses were performed with My-
Stat v12 (Systat Software Inc., Chicago, USA) using
pollen percentages and unsmoothed charcoal-accumula-
tion rates to investigate the effects of biomass-burning
rates on vegetation composition.

RESULTS

Inorganic sediment composition

Sediment colour became darker at ~4900 cal BP
(Fig. 2 A-D) and thin-section analyses indicate that
spring/summer (light calcite rich) layers became thinner
and autumn/winter (dark organic) layers became thicker
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Fig. 3. A) Changes in inorganic sediment composition (core AG10-1I). Loss-on-ignition (LOI) (organic matter, carbonates, and ignition
residue) as % dry weight (% dw) and as accumulation rates (g cm™ yr'), Nitrogen (% dw), atomic C:N ratio, pXRF records (Calcium
(Ca), Silica (Si), Sulphur (S), Iron (Fe), and Iron:Manganese ratio (Fe:Mn) as counts per seconds (cps); empty circles: datapoints; thick
line: loess smoothed records (~100 yr smoothing window), and sample scores of PCA axis 1; since the distribution of Fe, Mn, and
Fe:Mn ratio records were strongly left-skewed, their x-axes were cut in order to show the variations of the smoothened records. B)
High-resolution diatom record (selected diatom taxa as % values (black silhouettes), accumulation rates (x10°) of diatom groups and
Chrysophyte cysts, and sample scores of PCA axis 1; horizontal shaded area: darker sediments; dashed horizontal line: statistically sig-
nificant zone boundary. C) Fossil pigment record [selected pigments only; abundances expressed as nanomoles per gram of organic
matter (nmol g, ,, )] along with organic matter (as % dry weight (% dw)), and sample scores of the first PCA axis. D) High-resolution
pollen record (as percentages; selected pollen taxa only), selected pollen sums (the Anthropogenic Indicators curve includes following
taxa: Artemisia, Cerealia, Melampyrum, Plantago, and Urticaceae), sample scores of the first PCA axis, and total pollen accumulation

rates (PAR). Horizontal shaded area: darker sediments.
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(Fig. 2 A-B). In keeping with this, the LOI-derived estimate
of organic matter increased at ~4900 cal BP (Fig. 3a). The
other two LOI-derived estimates of sediment composition
[calcium (Ca) and ignition residue] are in good agreement
with uXRF records of Ca and silica (Si). C:N ratio values
were >20 throughout, pointing to a dominant and continu-
ous input of terrestrial organic matter into the lake (Meyers,
1994). The PCA1 sample scores indicate that the sediment
composition changed first at ~5250-5200 cal BP and later
at ~4900 cal BP. Whereas the first change only involved a
slight increase of iron (Fe) and manganese (Mn), the second
change was characterized by a more distinct increase of sul-
phur (S) and Fe and by a drastic decrease of Si (see also
PCA biplot; Supplementary Material). The Titanium (Ti)
record (Fig. 4) is characterized by a high variability and the
occurrence of several peaks that may be indicative of
stronger short-term erosion events. Overall, Ti concentra-
tions were highest at about 6100 cal BP, gradually de-
creased until about 5400 cal BP and thereafter slightly
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Fig. 4. Comparison between macrocharcoal-inferred fire history
and the pXRF-derived titanium (Ti) record (as counts per sec-
ond (cps)) as proxy for runoft from the catchment. The charcoal
record was decomposed into the charcoal background (C,,)
component and the C,.,, component [peaks exceeding the
ChacktCuresnola Values (red line)], which is indicative for local
large biomass-burning episodes. Horizontal shaded area: darker
sediments.

increased. Titanium is strongly correlated with PCA axis 2
(Supplementary Material) suggesting that its changes were
independent of the other inorganic elements.

Diatom assemblages

Diatom preservation was overall good and no disso-
lution features were observed. PCA1 sample scores and
the only statistically significant zone boundary indicate
that diatom assemblages (Fig. 3B) from sediments before
~4900 cal BP were markedly different from assemblages
deposited later. Assemblages changed from being domi-
nated by planktonic taxa (Cyclotella (Kiitzing) Brébisson)
to assemblages characterized by higher abundances of
Fragilaria Lyngbye, periphytic diatoms, and Stephanodis-
cus alpinus Hustedt. Planktonic diatom-accumulation
rates decreased abruptly at ~4900 cal BP, suggesting that
their productivity in the lake rapidly decreased. The di-
atom-accumulation rate drop suggests that the Si concen-
tration decrease can be referred to a decrease in biogenic
silica. In parallel to the planktonic diatom-accumulation
rates decrease, Chrysophyte-cysts accumulation rates in-
creased after 4900 cal BP. The higher abundance of Frag-
ilaria spp. at ~5250 cal BP is related to turbidite layer E.

Fossil pigments

Pigment preservation was overall good with
430nm:410nm ratios >0.85 (Guilizzoni et al., 1992). The
continuous presence of Isorenieratene (produced by green
sulphur bacteria) indicates that anoxic conditions reached
(at least seasonally) the photic zone throughout. The fila-
mentous cyanobacteria Anabaena (as inferred from the
carotenoid Aphanizophyll), which dominate the phyto-
plankton in autumn in this lake (de Bernardi et al., 1984),
were a significant component of the algal community al-
ready before human activities altered the ecosystem in the
past century. PCA axis 1 captured a gradient that is mainly
related to the abundance of Okenone (Fig. 3C and S6 in
ESM), pigments produced by obligate anaerobic photo-
synthetic purple sulphur bacteria (Chromatiaceae). Sam-
ple scores in the PCA biplot of the pigment dataset
showed greater overlap than in PCAs of the diatom and
of the inorganic-sediment component datasets. Neverthe-
less, PCA1 sample scores indicate that pigment assem-
blages changed mostly at ~5150 cal BP when pigments
from cyanobacteria (Zeaxanthin, and Myxoxanthophyll)
increased. A smaller change can be detected at about 5400
cal BP when pigments from green algae (Lutein, Allox-
anthin) and from cyanobacteria (Echinenone, Zeaxanthin)
increased suggesting enhanced productivity.

Vegetation and fire dynamics

No statistically significant zone boundaries were de-
tected attesting to the fact that pollen assemblages



Climate-induced mixing-regime shift 5000 years ago 217

changed little from 6200 to 4800 cal BP (Fig. 3D). As in
other parts of the southern Alpine region, vegetation was
dominated by mixed deciduous-oak forests throughout
(Tinner et al., 1999; Valsecchi ef al., 2008). The very low
abundance and the discontinuous presence of anthro-
pogenic-indicator pollen (i.e., Cerealia-type, Plantago,
Melampyrum, and Urticaceae) may indicate the presence
of small and/or discontinuous local settlements and agri-
cultural activities in the vicinity of the lake. However,
herb and anthropogenic-indicator pollen abundance were
low and these pollen types also include species that were
native in the regional flora before human activities
changed the landscape substantially. As shown by the
PCA1 sample scores, forest-cover composition changed
gradually. As inferred from rising pollen percentage val-
ues of Fagus, the changes were mainly related to the pop-
ulation expansion (Supplementary Material) of this
drought-sensitive deciduous tree (Jump et al., 2006).
Pollen percentage values of Fagus pollen attained ~7% in
the topmost sample, a value that is close to the maximum
relative abundance attained in the pollen record from
Lago Piccolo di Avigliana (Finsinger and Tinner, 2006).

The low-frequency variation of C,,, (Fig. 4) indicates
that regional area burnt was lower during the period 6150-
5700 cal BP than from 5700 to 5000 cal BP. At ~5000 cal
BP, regional area burnt decreased and reached similar
magnitude as at around 6000 cal BP.

Influence of fires on runoff and on vegetation

As the ignition-residue record seems to be largely in-
fluenced by biogenic silica (Fig. 3 A,B) we used the
uXRF-derived Ti (Fig. 4) as independent proxy for ero-
sion. Three major peaks (dated to ca. 5760, 5480, and
5200 cal BP) emerged after the decomposition of the
macrocharcoal record, with minor peaks detected at ca.
5950 and 4830 cal BP. Whereas several C,,,, were often
located close to Ti peaks (at ~6050, ~5750, ~5500, and
~5200 cal BP), suggesting an influence of local large fire
events on catchment runoff, other Ti peaks did not match
C s (at 5950, 5670, 5080, 4905, and 4850 cal BP).

To test the short-term impact of local fire events on veg-
etation, interactions between vegetation and biomass burn-
ing rates were analysed using cross-correlations
(Supplementary Material). Cross-correlograms between the
fire-intolerant Abies alba Mill. and charcoal-accumulation
rates showed significant negative correlations at time lags
around lag 0 consistently with the known fire sensitivity of
this conifer (Tinner et al., 1999). Taxa favoured by biomass
burning (i.e., with cross-correlograms showing significant
positive correlations at lags around lag 0) were the light-
demanding mesic trees Fraxinus, Quercus, and Ulmus.
These results support the hypothesis that increased biomass
burning rates influenced short-term vegetation shifts with
decreases in the fire-sensitive conifer (Abies) and increases

in less flammable deciduous trees. Fagus was positively
correlated at lag +4, thus after about 60 years following in-
creased biomass burning.

Influence of environmental changes on pigment
concentrations and diatom assemblages

Ordination analyses of the diatom dataset by RDA
(Fig. 5) identified Aphanizophyll (N,-fixing planktonic
cyanobacteria), Myxoxanthophyll (colonial attached
cyanobacteria), S, and Si as the subset of variables that
explained significant and independent amounts of varia-
tion. These four variables explained a large proportion
(65%) of the variance in the diatom assemblages (A,=0.63;
A,=0.02). RDA axis 1 captured an N,-limitation gradient
(indicated by the abundance of Aphanizophyll) that is pos-
itively correlated with S and negatively correlated with
Si. The latter variable is likely indicative of diatom-phy-
toplankton abundance since the Si and the diatom-accu-
mulation rate records show similar trends (Fig. 3 A,B).

DISCUSSION

Empirical models suggest that thermally stratified
lakes can undergo rapid ecosystem changes and that, as
opposed to shallow lakes, macrophytes do not play a rel-
evant role in regulating ecosystem dynamics (Genkai-
Kato and Carpenter, 2005). Several studies clearly
showed the strong influence of external nutrient loading
due to catchment disturbances such as the creation of cul-
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Fig. 5. RDA ordination of diatom assemblages from Lago
Grande di Avigliana, showing sample scores (symbols) and en-
vironmental variables [Myxoxanthophyll, Silicate (Si), Sulphur
(S), and Aphanizophyll (Aph.)] determined by forward selection
(vectors). Samples deposited prior to 4915 cal BP (full circles)
and samples deposited after 4915 cal BP (empty circles) are en-
circled by envelopes.
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tural land to yield crops and grazing meadows (Fritz,
1989; Dearing et al., 2006) on organic carbon concentra-
tions in the sediments (Lotter ef al., 1997b; Dean, 2002;
Marchetto et al., 2004). Similarly, major land-cover
changes at times of high-amplitude climatic changes
(such as at the Younger Dryas/Holocene boundary,
~11,650 cal BP) have been invoked as major drivers for
aquatic ecosystem dynamics (Brauer et al., 1999;
Schmidt ef al., 2002). However, other studies suggest that
nutrient concentrations in the photic zone can also change
in response to lower-amplitude climate changes that may
influence mixing regime or mixing depth (Smol and Bou-
cherle, 1985; Kirilova et al., 2009; Martin-Puertas et al.,
2012). The high-resolution multi-proxy record from Lago
Grande di Avigliana may contribute to further our under-
standing of the influence of Holocene climate variability
on stratified lakes.

The lake sediments were deposited at a complex time
when climate was changing and agriculture was just be-
ginning in the region. During the end-stages of the Ne-
olithic, settlements probably had short duration and
shifting-cultivation agriculture, possibly with the use of
fire, was widespread in Central Europe (Rdsch et al.,
2002). In the Avigliana region no direct evidence for local
settlements older than the pile dwellings dating to the
Middle-Late Bronze Age (i.e., about 3500 to 2800 cal BP)
(Volta, 1955; De Marinis, 1998) has been found. How-
ever, absence of evidence for archaeological settlements
cannot be used as a proof of the local absence of people.
In fact, settlements in the nearby valley during, for exam-
ple, the Copper Age (Venturino Gambari, 1998) attest to
the presence of small farming groups about 4600 to 4200
cal BP (Finsinger and Tinner, 2006). Moreover, an earlier
investigation of the sediments from the nearby Lago Pic-
colo di Avigliana suggested that the combined effects of
climatic change towards cooler conditions and human ac-
tivities likely contributed to land-cover changes involving
the expansion of shade-tolerant and drought-sensitive
Fagus populations (Valsecchi ef al., 2008).

Cross-correlations between charcoal-accumulation
rates and anthropogenic-indicator pollen are, however, not
conclusive concerning the use of fire for agriculture be-
cause Cerealia-type pollen is positively correlated at time
lag +3 (i.e., ~45 years after a biomass burning event) in-
stead of increasing immediately after biomass burning
events. It may be speculated that biomass burning pre-
ceded cereal cultivations and that the area of croplands
increased for ~40 years. This would be consistent with ev-
idence from analyses in southern Germany (Bogaard,
2002). Still, cross-correlations suggest short-term vegeta-
tion responses to increased fire activity and it is likely that
the actual landscape openness was larger than estimated
by pollen percentages (Soepboer et al., 2010). Neverthe-
less, the overall forest-cover changes in the region as es-

timated by pollen percentages alone were small and do
not compare to major land-cover changes as recorded dur-
ing the earlier Younger Dryas/Holocene transition or at
the onset of intensive agriculture during the later Bronze
and Iron Ages in Central Europe, when a distinct link be-
tween forest cover, intensive agriculture, and enhanced
nutrient flux from external sources into lakes could be
made (Fritz, 1989; Brauer et al., 1999; Schmidt et al.,
2002; Bradshaw et al., 2005).

In addition to agriculture, natural fire occurrence or
man-made fires may also cause an increase in nutrients
due to erosion of nutrient-rich topsoil (Wright, 1976;
Hickman et al., 1990; Kelly et al., 2006). Peaks of char-
coal-accumulation rates in lake sediments can lag a fire
event by up to 15-30 years (Whitlock and Millspaugh,
1996; Duffin et al., 2008; Higuera et al., 2011). Accepting
such a lag, the comparison between Ti and charcoal
records suggests that some fire events may have led to
short-term increases of soil erosion from the catchment.
However, several Ti peaks were unrelated to large char-
coal peaks, perhaps because local fire episodes were
smaller in size or because processes independent of bio-
mass burning (e.g., strong precipitation events) could have
enhanced erosion. Nevertheless, as indicated by the Ti
record, erosion from the catchment was highest at around
6100 cal BP and the frequency of Ti peaks was lower after
about 5400 cal BP. Overall, it seems that although land
cover changed slightly between 6200 and 4800 cal BP,
nutrient input from topsoil erosion was probably not en-
hanced. This is consistent with results from the C:N ratio
record pointing to a continuous input of terrestrial organic
matter into the lake (Meyers, 1994) as well as with results
of the RDA, which indicated that variables characterizing
processes in the terrestrial ecosystem did not explain sig-
nificant amounts of variance in the diatom assemblages.

It is certainly difficult to accurately assess the lead-lag
effects due to large uncertainties in the chronologies of
the paleoclimate proxy records and of the Lago Grande
di Avigliana record. In fact, a first change in mixing
regime is recorded by pigments of obligate sulphur bac-
teria at ~5400 cal BP. Obligate anaerobic photosynthetic
sulphur bacteria are restricted to anoxic conditions in the
presence of sulphides and are capable of photosynthesis
at extremely low irradiances of light (Lampert and Som-
mer, 1999). Instead, green sulphur bacteria (isorenier-
atene) are able to live at greater depths than purple sulphur
bacteria (okenone) because they can use lower light in-
tensities (Lampert and Sommer 1999). As isorenieratene
and okenone are characterized by similar degrees of
chemical stability (Leavitt and Hodgson, 2001), the ab-
sence of okenone and the persistence of isorenieratene
starting from ~5400 cal BP attests to a stronger and deeper
mixing of the upper water column. Such a change could
have caused nutrients stored in the anoxic hypolimnion to
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be periodically returned to the epilimnion during times of
deeper mixing in spring. In keeping with this, pigment
concentrations of Lutein (green algae), Alloxanthin, Echi-
nenone, and Zeaxanthin (cyanobacteria), and of -
Carotene (all primary producers), increased from ~5400
cal BP onwards pointing towards enhanced primary pro-
ductivity. The increase of Aphanizophyll (from N,-fixing
cyanobacteria) may attest to the occurrence of N,-limita-
tion at the end of the growing season in the epilimnion as
a consequence of enhanced summer phytoplankton pro-
duction. However, the amount of nutrients brought into
the epilimnion was probably small because diatom assem-
blages were still stable between 5400 and 4900 cal BP. In
addition, the change in mixing regime probably did not
affect the deeper water column at that time, as the Fe:Mn
ratio, which is often used to support the evidence of
anoxia at the sediment-water interface because the solu-
bility of Mn increases more than solubility of Fe under
strongly reducing conditions (Engstrom and Wright,
1984), remained largely unchanged. Several proxy
records from the northern Mediterranean borderlands sug-
gest that the climate shifted towards wetter/cooler condi-
tions around 5000-4500 cal BP (Magny ef al., 2013). The
Fagus population expansion has been attributed to a com-
bined effect of a climate shift (cold phase CE-6 (~5400-
4900 cal BP); Haas et al., 1998) and of human activities
(Tinner and Lotter, 2006; Valsecchi et al., 2008). More-
over, lake-level change records from lakes located further
south (Lago dell’ Accesa, central Italy, Magny et al., 2007)
and further north (Lac Cerin, Jura Mountains, Magny et
al., 2011) also indicate a significant shift towards higher
lake levels at ~5000-4500 cal BP around the Alpine re-
gion. In addition, fire activity strongly decreased around
5000 cal BP likely as a result of cooler/wetter summers
(Vanniere et al., 2011).

The broad coincidence between the phytoplankton dy-
namics and rising lake-levels and cooler temperatures may,
point to the effects of climate change on the nutrient recy-
cling in the lake by means of the control that climate can
exert on mixing depth. Several lines of evidence point to
increased productivity after ~4900 cal yr BP at Lago
Grande di Avigliana. Diatom-assemblage shifts similar to
those of Lago Grande di Avigliana have been related to in-
creased nutrient flux to the epilimnion due to a change in
mixing regime (Moser et al., 2002; Kirilova et al., 2009).
Smol and Boucherle (1985), for example, suggested that
in strongly stratified lakes the breakdown of water-column
stratification may cause nutrients stored in the hy-
polimnion to be returned to the epilimnion, allowing hy-
pertrophic diatoms such as Stephanodiscus Ehrenberg and
Fragilaria to replace oligotrophic planktonic taxa such as
Cyclotella as reconstructed in the sediments of Lago
Grande di Avigliana. S. alpinus are cold-water preferring
early-spring phytoplanktonic bloomers that require rela-

tively high phosphorus values as often occurs during
spring mixing (Lotter, 1989; Kirilova et al., 2008). In keep-
ing with this, the higher relative abundance of small Frag-
ilariaceae and benthic diatoms may attest to higher
turbidity (Bigler ef al., 2003) and the simultaneous in-
crease of Chrysophycean cysts also points towards en-
hanced primary productivity in the water column
(Bradbury and Dieterich-Rorup, 1993). The enhanced pri-
mary productivity during spring and summer possibly led
to lower Si:P ratio due to depleted Si supply (Lotter, 2001)
and favoured a shift towards other planktonic algal groups
(e.g., green algae, cyanobacteria) during the summer stag-
nation as shown by increasing concentrations of Chloro-
phyll b, Lutein, and Diadinoxanthin. Further, pigments
from cyanobacteria showed first an increase of colonial
cyanobacteria (Myxoxanthophyll) followed by an increase
of N,-fixing cyanobacteria (Aphanizophyll), probably in
response to decreasing P:N ratios and stagnation over the
course of the summer, making the cyanobacteria more
competitive in comparison to diatoms.

In addition to showing that nutrients were returned to
the epilimnion from the hypolimnion as suggested by pre-
vious studies (Smol and Boucherle, 1985; Martin-Puertas
et al., 2012), the geochemical record suggests that P-re-
lease rates from the sediments could also have increased,
thereby accelerating eutrophication by internal loading.
In fact, enhanced precipitation of iron sulphides (FeS) to-
gether with higher accumulation rates of organic matter
at the sediment-water interface may enhance P-release
rates, as they are strongly influenced by the balance be-
tween gross sedimentation of organic matter, P, Fe, and
the sulphide production driven by diagenetic processes in
the sediment (Géchter and Miiller, 2003). The stability of
this feedback mechanism is still unclear in the absence of
additional case studies that allow consideration of possi-
bly non-linear relationships between a variable and mul-
tiple predictors. However, because all these factors act in
the same direction, i.e., increased eutrophication, it is
probable that the changes observed in the diatom assem-
blages were caused both by mixing-depth changes bring-
ing nutrients into the epilimnion and by P-release rates
from the sediments.

CONCLUSIONS

Our methodology of multi-proxy investigation of sed-
iments seems well adapted to documenting long-term
lake-ecosystem dynamics with an integrative approach of
catchment dynamics (land-cover changes, runoff, fire his-
tory) and within-lake processes (mixing depth, P-release
rates, phytoplankton dynamics) in strongly stratified
lakes. Such lakes with long sequences of varved sedi-
ments have been reported from throughout the world from
mid-latitudes to the inner tropics, thus covering a wide
range of climatic conditions. Multiple-site investigations
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could allow a better assessment of the respective roles of
factors influencing the long-term dynamics of stratified
lakes. Moreover, a record spanning a longer time frame
might be necessary to get an insight into the response to
different intensities of land-cover changes and thus bring
more convincing evidence as to the mechanisms leading
to rapid shifts in such aquatic ecosystems.
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