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INTRODUCTION

Artificial ponds are often created for purposes such as
water supply, floodwater retention, recreation, education,
or wildlife management and research (Oertli et al., 2005).
They can also be useful in wastewater treatments or can
serve as elements of the local ecological network, substi-
tuting for natural wetlands. The recognition of the ecolog-
ical services provided by wetlands has stimulated renewed
efforts to protect, manage and construct them (Mitsch et
al., 1998; Zedler, 2006), although their real contribute in
enhancing biodiversity is still not clear. Some studies
proved that created wetland systems can make net contri-
butions to overall biodiversity, so they are often used in
restoration projects to increase biodiversity in degraded
river ecosystems (Palmer et al., 2007, 2010). On the other
hand, some studies showed that in many restored wetlands
ecosystem services may not be completely recovered even
when wetlands appear to be biologically restored (Moreno-
Mateos et al., 2012). Unless the man-made ecosystems are

developed in a long-term perspective, they will be a sink
for generalist fauna and cannot immediately replace wet-
land original faunas (Ruhí et al., 2013). There is also little
knowledge on the processes taking place in these artificial
environments and on their ecological function, especially
at the invertebrate community level (Herrmann et al., 2000;
Ruhí et al., 2009). Research on constructed wetlands has
most frequently been addressed to evaluate their efficacy
in pollution removal and flood mitigation, with less atten-
tion to their role as ecosystems (Mitsch et al., 1998; Spieles
et al., 2006). Only a few studies (Spieles and Mitsch, 2000;
Fairchild et al., 2000; Balcombe et al., 2005; Becerra-Ju-
rado et al., 2009; Gallardo et al., 2012) have analysed the
macroinvertebrate communities of constructed wetlands
and the environmental factors that influence them. A deeper
knowledge of the biodiversity hosted in these environments
is needed to determine if artificially created ponds and con-
structed wetlands are also appropriate restoration tools for
biological conservation (Ruhí et al., 2009). It is also rele-
vant to analyse the effectiveness of wetlands to mitigate the
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habitat loss at a local scale (Gallardo et al., 2012). Macroin-
vertebrates are directly affected by the physical and chem-
ical integrity of the surrounding environment, including
water quality (EPA, 2002). They are known to influence
the rates of nutrient cycling and decomposition, to have a
central position in the wetland food webs and to integrate
environmental impacts and changes through time (Scatolini
and Zedler, 1996; Sharitz and Batzer, 1999; Brady et al.,
2002; Stanczak and Keiper, 2004). Therefore, they are po-
tentially useful as indicators of restoration success (Camp-
bell et al., 2002).

We examined the macroinvertebrate communities and
their relationships with water quality and habitat hetero-
geneity in eight ponds within a natural park in northern
Italy. We chose four artificial ponds created for various pur-
poses and four natural ecosystems that served as reference
sites. The artificial and constructed wetlands were expected
to act as a refuge for aquatic organisms in areas where water
resources were scarce, making a net contribution in the
local ecological network. The general aim of the work was
to improve the understanding of factors affecting the inver-
tebrate community structure in artificial ponds and con-
structed wetlands. In particular, we intended i) to assess the
role of the artificial wetlands in improving biodiversity and
ii) to compare the macroinvertebrate community composi-

tion and biodiversity observable in artificial ecosystems
with those of natural wetlands. Our hypothesis is that
macroinvertebrate communities in constructed wetlands
that have a habitat availability comparable to that of natural
wetlands can rapidly reach the same levels of biodiversity.
Evidence about the successful inclusion of constructed wet-
lands of various kind in ecological networks can have im-
plications in local biodiversity management and in artificial
wetland design.

METHODS

Sampling sites

Eight wetlands were selected within Parco Pineta, a
natural park in Northern Italy, 35 km northwest of Milan
(Fig. 1). They lie in a hilly wooded and cropped area, con-
sisting of clay terraces originating from Pleistocene ero-
sion, which allow water accumulations. The entire park,
enclosed by an urbanized area, is located in the wider ter-
ritorial area of the Alps piedmont hills and covers about
4860 ha. On average, the maximum summer temperatures
(July) are approximately 22.0°C and the minimum winter
temperatures (January) are 1.6°C; annual temperature
variation is around 20.3°C. The total rainfall is about
1400-1500 mm per year, with a primary maximum in

Fig. 1. Study area with the location of the eight considered wetlands. White dots, natural ponds; black triangles, constructed wetlands;
grey diamonds, artificial pools. 
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spring and a secondary in autumn. The climate can be de-
fined as mildly continental.

The wetlands were selected for this study on the basis
of their origin, microhabitats, bank morphology and depth.
Natural (NAT) wetlands were characterized as erosional
features or by-products of anthropogenic activities carried
out in the past centuries. These wetlands had multiple mi-
crohabitats, variable depths (maximum depth >1 m) chang-
ing gradually and typical wetland vegetation (different
macrophytes and riparian grasses). The four studied NAT
ponds are designated as: Cà Bianca (CABI), San Siro
(SSIR), Proverbio (PROV), Roncamocc (RONC). Artificial
Park pools (PARK) have been made by the Park manage-
ment with the primary purpose of providing habitat and re-
covery for amphibian species. They are oval-shaped, 50 m2

surface and 1 m deep. The considered PARK pools are two,
Tradate (TRAD) and Castelnuovo Bozzente (CAST). The
two constructed wetlands (CW) receive wastewater from
the mixed sewer system of a hamlet placed in a wooded
area, and include a surface flow pool (CW-SF) and a fol-
lowing smaller pond (CW-pond). They cover 306 and 105
m2, respectively, and both have a maximum depth of 0.6
m. Although both man-made, we decided to consider sep-
arately PARK pools and CW because of their different
scope and their extremely dissimilar water nutrient concen-
trations which were much higher in CW pools than in
PARK wetlands.

Habitat characteristics

Environmental characteristics were measured in each

pond to describe the whole ecosystem. Particularly, we
documented areal coverage of submergent, emergent and
floating macrophytes, calculated as the percent coverage
of the whole wetland area. For the riparian grasses the de-
gree of coverage was calculated as the percent area cov-
ered within a riparian 1 m buffer. We also evaluated the
presence/absence of wood structures such as floating and
submerged trunks, roots and living trees.

Gradual bank slopes, bends in the pond perimeter,
variable depths, and permanent shady or sunny areas
given by the canopy coverage were considered in terms
of presence/absence to account for the morphological
habitat diversity. A score between 0 and 6 was calculated
by the sum of the presences of such elements. The mor-
phological diversity was low if the score was in the 0-3
range and high if it was in the 4-6 range (Tab. 1). A similar
approach to determine habitat heterogeneity had been
used by Martínez-Sanz (2012). Tab. 1 also reports the total
number of microhabitats in each pond considering both
macrophyte coverage and morphological characteristics.

Water quality

Physico-chemical and microbiological parameters
(Tab. 2) were analysed in samples collected at the same
time as macroinvertebrate qualitative samples. Some
water parameters (temperature, dissolved oxygen, oxygen
saturation and electric conductivity) were measured in
situ, using a Hach-Lange probe with a LDO oxygen sen-
sor. For the other parameters [pH, total chemical oxygen
demand (COD), total phosphorus, total nitrogen, ammo-

Tab. 1. Environmental variables and morphological differentiation in each pond. The coverage of macrophytes was calculated as per-
centage of the whole pond area; the coverage of riparian grasses was calculated as the occupied percentage of a riparian 1m buffer.
Morphological differentiation has been counted as sum of morphological characteristics presence (low if the result of the sum was 0-3;
high if the result of the sum was 4-6). The total number of microhabitats includes both macrophyte coverage and morphological char-
acteristics.

CW PARK NAT
CW-SF CW pond CAST TRAD CABI PROV RONC SSIR

Macrophyte Submergent macrophytes 0% 0% 50% 70% 0% 30% 0% 30%
coverage Emergent macrophytes 60% 10% 30% 30% 20% 20% 70% 40%

Floating macrophytes 40% 90% 20% 0% 30% 30% 0% 10%
Free water 0% 0% 0% 0% 50% 20% 30% 20%

Riparian grass 0% 10% 40% 40% 20% 10% 50% 30%

Morphological Woody structures no no no no yes yes yes yes
characteristics Gradual bank slopes no yes yes yes no yes yes yes

Bends no no no no no yes no yes
Variable depth no yes no no yes yes yes yes
Permanent shady areas no yes no yes no yes no yes
Permanent sunny areas yes yes no no yes no no no

Morphological differentiation low high low low low high low high

Total number of microhabitats 3 7 5 5 7 10 6 10
CW, constructed wetlands; PARK, artificial pools; NAT, natural ponds; CAST, Castelnuovo Bozzente; TRAD, Tradate; CABI, Cà Bianca; PROV, Prover-
bio; RONC, Roncamocc; SSIR, San Siro.
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nia nitrogen, Escherichia coli], water samples were col-
lected in bottles, kept in the dark in refrigerated bags, and
analysed in laboratory within 24 h of collection, according
to Standard Methods (APHA, 1998).

Biological samplings

Macroinvertebrates were collected between June 2008
and August 2009 by qualitative seasonal samplings. Sam-
ples were taken with a 500 µm mesh size net (0.05 m2) in
each pond, according to Gascón et al. (2008), from all mi-
crohabitats at each site, considering the present vegetation
species (submergent, emergent and floating macrophytes;
riparian grass), the bottom characteristics, the solar expo-
sition, the banks morphology and the presence of wood
structures.

Samples were preserved in 90% ethanol before being
sorted, counted, identified at the lowest taxonomical level
possible (usually species or genus; family for Diptera and
Oligochaeta) and then conserved in 4% formaldehyde.
Taxa richness, Shannon index and Pielou index were eval-
uated using data at family level to compare all macroin-
vertebrates at a homogeneous taxonomical level.

Data analysis

Principal components analysis (PCA) was performed
to evaluate the relationships of all environmental and
water quality variables.

Analysis of similarity (ANOSIM; 999 permutations,
Bray-Curtis as a distance measure) was performed to as-
sess any significant difference among community assem-
blages. Similarity Percentage (SIMPER) analysis was
used to determine which macroinvertebrate families ex-
plained more dissimilarity among the three wetland cate-
gories (NAT, PARK, and CW). The identification of such
families was based on the ratio average dissimilarity val-
ues/standard deviation: taxa having the ratio value >1
were considered to discriminate wetland categories, as re-
ported in Ruhí et al. (2013).

A one-way analysis of variance (ANOVA) was used to
evaluate any significant difference among biodiversity met-
rics in the three wetland categories. Thus, we considered
the wetland categories as predictor variables (treatments)
and three biodiversity indices (taxa richness, Shannon index
and Pielou index) as response variables. A posteriori pair-
wise comparisons between treatments were carried out
using Tukey’s HSD test. ANOSIM and SIMPER analyses
were conducted using the vegan package version 2.0-10
(Oksanen et al., 2013) in R Project software (R Core Team,
2013); ANOVA and Tukey’s HSD test have been carried
out using the software XLSTAT 7.

A Canonical Correspondence Analysis (CCA) was
performed to evaluate the relationships between macroin-
vertebrate communities and site environmental character- Ta
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istics using the software CANOCO 4.5 (ter Braak and
Smilauer, 1998). A preliminary Detrended Correspon-
dence Analysis (DCA), performed on the invertebrate
community data, showed a gradient length >3 SD, indi-
cating a unimodal response and, thus, justifying the use
of CCA. Only the environmental variables significantly
related (Monte Carlo permutation test, P<0.05) to
macroinvertebrate distribution were retained. Variables
showing strong multicollinearity (Variance Inflation Fac-
tors >20) were also excluded from the analysis (see Re-
sults section).

RESULTS 

Environmental characteristics of the ecosystems

The morphological diversity of ponds is shown in Tab.
1. SSIR and PROV resulted to have the highest values for
morphological microhabitat differentiation and macro-
phyte coverage, thus allowing the highest total number of
microhabitats, while CW-SF was the least differentiated
for morphology and vegetation. Even if CAST and CABI
had a low level of morphological differentiation, they
were characterized by the presence of various microhab-
itats due to the macrophyte richness or to the presence of
wood structures. CW-pond also presented high morpho-
logical differentiation associated to vegetation diversity.
Water quality analyses showed that CW-pond and CW-
SF had higher concentrations of total phosphorus, total
nitrogen and ammonia nitrogen than natural (NAT) and
artificial (PARK) ponds, as well as higher conductivity
and E. coli counts. They were also characterized by low
dissolved oxygen (DO) concentrations, as were RONC
and PROV natural ponds, where the decomposition of
massive vegetation was particularly intense. All the other
natural and artificial ponds presented more similar water
quality; the DO oversaturation in CABI and in CAST,
more exposed to sunlight than the other ponds, was due
to relevant phytoplankton blooms, influencing also the
total COD value (Tab. 2).

In the PCA analysis of environmental and water qual-
ity variables, the emergent macrophytes variable was ex-
cluded because of its ubiquity in each considered
ecosystem. As shown in Fig. 2, the 66.13% of variance
was explained by the first two PCA axes together. Mor-
phological ecosystem diversity showed a significant pos-
itive relationship with the total available microhabitat
number (bilateral t-test; α=0.05). No significant relation-
ship was found between morphological characteristics and
water quality, with the exception of riparian grass and
temperature. However, temperature is related to sunlight
exposition rather than to water quality. The whole set of
water quality parameters was covariant. On axis 1 CW-
pond and CW-SF appeared to be clustered and separated
from the other ponds, because of their water quality. On

the other hand, a correlation could be observed between
them and the other ponds on axis 2, that showed a gradient
in microhabitats differentiation, in which CW-pond and
CW-SF have an intermediate position. The two PCA axes
showed that ponds and pools were divided into three clus-
ters, based on their relationships with higher morpholog-
ical diversity (PROV and SSIR), nutrient concentrations
(CW-pond and CW-SF) and phytoplankton blooms, re-
lated to COD and high DO concentrations (CABI and
CAST mainly). So, the water quality gradient was con-
firmed to be relevant and to be likely to affect the
macroinvertebrate community assemblages.

Macroinvertebrate communities

A total of 35 macroinvertebrate taxa (at family level)
were collected from the whole pond set. In order to com-
pare NAT, PARK and CW, the mean percent abundance
for each macroinvertebrate class (subclass for Clitellata)
were calculated (Fig. 3). CW and PARK showed a similar

Fig. 2. PCA biplot diagram showing relationships (first two
axes, 66.13% of the total variance) between some of the envi-
ronmental variables (lines) and sites (dots). Morph Div, mor-
phological diversity; Tot Hab, number of total microhabitats;
Subm M, submergent macrophytes; Float M, floating macro-
phytes; Wood, woody structures; Ripa, riparian grass; CAST,
Castelnuovo Bozzente; TRAD, Tradate; CABI, Cà Bianca;
PROV, Proverbio; RONC, Roncamocc; SSIR, San Siro.
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percent composition; (>90% Insecta Gastropoda and
Oligochaeta for the remaining fraction), while the NAT
category displayed a higher level of diversity. Insecta
turned out to be the most relevant class in the three
ecosystem groups, although there were differences among
the composition in the macroinvertebrate orders (Fig. 3).
ANOSIM was used to compare the variation in commu-
nity abundance and composition among the three wetland
categories. The model resulted not significant (R=0.144,
P=0.073), thus showing no significant difference in taxo-
nomical composition among the three wetland categories.

SIMPER analysis was chosen to identify the taxonom-
ical group which explained more dissimilarity among the
three wetland categories (Fig. 4). A significant dissimilar-
ity in taxa composition was observed between CW and
NAT wetlands (R=0.318, P=0.002) and was mainly driven
by Chironomidae, Baetidae, Dytiscidae and Aeshnidae
families. The dissimilarity between CW and PARK and
between PARK and NAT was not significant.

For every pond biodiversity indices (Taxa richness,
Shannon Index and Pielou Index) were calculated for each
sampling campaign: Tab. 3 reports the indices mean val-

ues for NAT, CW and PARK ecosystem categories. The
values of the biodiversity indices for the three ecosystem
categories were comparable, but slightly higher for the
PARK group. In the ANOVA model evaluating the differ-
ences among the biodiversity indices there was no signif-
icant variation (α=0.05) among and within the three
groups of sites and the null hypothesis (no treatment ef-
fect) had to be considered true (Tab. 3). Tukey’s HSD test
for pairwise comparison showed the absence of signifi-
cant differences among the three treatments for all the bio-
diversity indices (α=0.05). This result agrees with
ANOSIM response and confirms that no significant dif-
ference was observable in terms of biodiversity among
the different wetland types, even though the taxonomical
composition of the macroinvertebrate communities pre-
sented some differences.

Relationship between environmental
and biological characteristics

The first two axes of the CCA exploring the relationship
between macroinvertebrate taxa and environmental factors

Fig. 3. Histograms representing the mean percentage of macroinvertebrate individuals belonging to different classes and Clitellata sub-
classes (histograms with C label) and the mean percentages of Insecta class composition (orders or suborders, histograms with O label)
in each ecosystem category. CW, constructed wetlands; NAT, natural ponds, PARK, artificial pools.
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had eigenvalues of 0.473 and 0.300, together explaining
59.9% of the total variation in the data set (Tab. 4). The
Monte Carlo permutation test showed a significant result
for the sum of all eigenvalues (499 permutations, P<0.05).
In the preliminary CCA analysis, seven environmental vari-
ables (conductivity, total phosphorus, emergent macro-
phytes, wood presence, morphology, fish presence and

droughts) had high variance inflation factors (IF>20), i.e.,
were highly correlated with other variables and were thus
less significant in explaining the community assemblages,
so they were excluded from the final CCA analysis (see
methods). The environmental variables included in the final
analysis were: surface area of the water body, DO, temper-
ature, pH, total nitrogen, ammonia nitrogen, COD, E. coli,

Fig. 4. Similarity percentage (SIMPER) analysis, revealing families that contributed most to dissimilarity between wetland categories
(CW, constructed wetlands; NAT, natural ponds, PARK, artificial pools). The ratio (average dissimilarity values/standard deviation) is
given in parenthesis. ANOSIM pairwise tests between wetland categories are also shown.

Tab. 3. One-way ANOVA table showing the sum of squares (SS), mean square (MS), the F-ratio and the P-value calculated for each
biodiversity index.

ANOVA
Group of sites Mean ± SD dF SS MS F-ratio P

Taxa richness CW 11.8±2.7 Model 2 67.15 33.58 1.33 0.294
NAT 8.1±6.5 Residual 15 378.46 25.23

PARK 12.3±3.9 Total 17 445.61

Number of individuals CW 428±495 Model 2 19.06*104 95309.24 0.57 0.578
NAT 202±389 Residual 15 25.13*105 167537.10

PARK 227±278 Total 17 27.04*105

Shannon index CW 2.30±0.62 Model 2 3.16 1.58 1.70 0.215
NAT 1.66±1.29 Residual 15 13.93 0.93

PARK 2.69±0.31 Total 17 17.10

Pielou index CW 0.65±0.14 Model 2 0.19 0.09 1.24 0.317
NAT 0.51±0.38 Residual 15 1.15 0.08

PARK 0.77±0.15 Total 17 1.34
SS, sum of squares; MS, mean square; CW, constructed wetlands; NAT, natural ponds, PARK, artificial pools. P-value standard alpha level=0.05.
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floating macrophytes and riparian grass. It is worth remem-
bering that, in the examined cases, COD was mostly related
to the algal blooms rather than to the input of organic load.
This is confirmed by the positive relationship between
COD and DO (due to supersaturation caused by photosyn-
thesis) and by the higher COD found in NAT and PARK
ponds rather than in CW, fed on domestic sewage.

Although the three ecosystem categories did not
present significant differences in the overall biodiversity
level, as shown by ANOSIM and ANOVA, differences
in the community assemblages among the three cate-
gories were demonstrated by the CCA. The triplot dia-
gram (Fig. 5) shows the distribution of the relative
abundance of macroinvertebrates (with Insecta repre-
sented at order level) in the sampling sites. CWs ap-
peared clustered because of their different water quality,
which seemed to be preferred by Coleoptera,
Ephemeroptera and Gastropoda, whose relative fre-
quency is higher in constructed wetland samples. The
other macroinvertebrate orders were probably limited by

water quality and were related to elements unavailable
in the CWs, such as the presence of diversified macro-
phyte communities (in PARK ponds and some of the
NAT wetlands) or the larger surface area (mainly in NAT
ponds) providing numerous microhabitats. The available
habitats can allow the presence of different taxa, such as

Tab. 4. Summary of the canonical correspondence analysis.
Monte Carlo test run for the sum of all eigenvalues was signif-
icant (499 permutations, P<0.05).

Axis 1 2 Total inertia

Eigenvalue 0.473 0.300 1.585

Species-environment correlations 0.989 0.978

Cumulative percentage variance
of species data 29.9 48.8
of species-environmental relation 36.7 59.9

Sum of all canonical eigenvalues 1.290

Fig. 5. CCA triplot diagram showing the relationships between macroinvertebrates (classes, orders or suborders), environmental variables
and sampling sites. Triangles, natural wetlands; black squares, artificial wetlands; grey dots, constructed wetlands.
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Odonata, Hemiptera and Trichoptera. In this study, they
appear more frequently in NAT and PARK ponds,
notwithstanding the overall biodiversity and evenness of
their communities is comparable to the one of CWs.

DISCUSSION

Differences in macroinvertebrate assemblages were
observed among sites and were related to the different en-
vironmental, morphological and water quality conditions.
Water chemistry and trophic conditions have often been
cited as relevant factors affecting the macroinvertebrate
community assemblage and biomass in lentic ecosystems
(Friday, 1987; Rasmussen, 1988; Brodersen et al., 1998;
Boix et al., 2008). Water body size and habitat structure
also seemed to influence the macroinvertebrate commu-
nities differing in abundance and species composition
(Oertli, 1995; Tolonen et al., 2001; Weatherhead and
James, 2001; Della Bella et al., 2005). As suggested by
Hansson et al. (2005), wetlands characterised by rela-
tively shallow depth, large surface area and high shoreline
complexity are likely to yield higher biodiversity values
in benthic invertebrate communities. The preference of
many invertebrate taxa for certain vegetation or bottom
substrate types (Minshall, 1984) may also influence the
biodiversity. Many studies have shown positive relation-
ships between taxa richness, habitat heterogeneity and
area for many invertebrate orders (Huston, 1994; Rosen-
zweig, 1995; Heino, 2000; Céréghino et al., 2008). There-
fore, many authors consider that increasing habitat
heterogeneity is the most efficient strategy to recover bio-
diversity (Tockner et al., 1999; Tews et al., 2004; Gallardo
et al., 2012). Wetland morphological differentiation and
water quality were probably the most relevant factors that
could explain the different community structure among
the sites we monitored. A diversified macrophyte commu-
nity and/or the availability of other habitats can support
more specialized taxa such as Odonata, Hemiptera and
Trichoptera, that in this study appeared more frequently
in natural ponds and in the artificial pools that were built
by the Park management with a high vegetation complex-
ity. Water quality also plays a role: constructed wetlands,
characterized by the highest nutrient concentrations,
showed assemblages composed mainly by pioneer taxa
and tolerant families of Diptera, Coleoptera and
Ephemeroptera, the latter including only individuals be-
longing to the Baetidae family.

Although water quality improvement is generally the
primary objective of treatment wetlands, the creation of
habitats is a complementary outcome of these projects
(Knight et al., 2001; Hsu et al., 2011). Macroinvertebrates
are often early colonists of new created wetlands, with
abundance and diversity approaching high levels within
a few years from wetland construction (Hansson et al.,
2005; Batzer et al., 2006; Stewart and Downing, 2008).

The two constructed wetlands in this study were recently
built (Spring 2008) and monitored during their first year
of working. Gallardo et al. (2012) found significant dif-
ferences in biodiversity between natural and recently con-
structed wetlands. We found differences in the
composition of macroinvertebrate assemblages, but in this
study the overall level of biodiversity was comparable
among the three ecosystem categories. Some authors have
found similar taxa richness in natural wetlands and in 1
to 10 year-old constructed wetlands (Barnes, 1983;
Stanczak and Keiper, 2004; Hansson et al., 2005; Spieles
et al., 2006), but critics often argue that certain aspects of
created wetlands (e.g., plant communities and soils) can
not be similar to natural wetlands for at least almost 5
years (Campbell et al., 2002). Miguel-Chinchilla et al.
(2014) have recently demonstrated that environmental
factors better explain the pond biodiversity than pond age,
influencing the number and type of taxa that are able to
colonize man-made ponds. However, the creation of con-
structed wetlands has the potential to provide a habitat
that may be unavailable within the surrounding landscape
(Becerra-Jurado et al., 2009). Thus, a more integrated
management of water quality and biodiversity enhance-
ment, as suggested by the integrated constructed wetlands
concept (Harrington and Ryder, 2002; Harrington et al.,
2005; Scholz et al. 2007), is required.

The constructed wetlands we examined showed the
potential, right from the start of their insertion in the en-
vironment, to be valuable elements in the local ecological
network. The pioneer invertebrate communities let them
reach an overall biodiversity level similar to the other
ponds in the park within a year. This finding, apparently,
confirms our starting hypothesis that macroinvertebrate
assemblages in constructed wetlands that share compara-
ble physical habitats with natural wetlands can have sim-
ilar biodiversity levels. Nevertheless, it will be necessary
to assess if the new artificial and constructed wetlands
could support a comparable community composition in
the long term. Ruhí et al. (2013) demonstrated that pio-
neer assemblages in man-made ecosystems (1st year after
construction) present a structure that is highly nested
within the natural ones at a regional scale, due to the ar-
rival of active dispersers from nearby water bodies. A pro-
gressive decrease in the populations of active colonizers,
and the progressive erratic arrival of passive dispersers,
make nestedness value fall over time in man-made wet-
lands, allowing diversity values higher at mid term (3rd

year) than in the early successional stages. At the same
time, the differences in macroinvertebrate community
composition that we detected between natural and con-
structed wetlands suggest that invertebrate assemblages
in wetlands with various origin can differentiate in func-
tionality, thus creating the premises for significant ecosys-
tem divergences.
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CONCLUSIONS

Constructed wetlands and artificial ponds show the
potential, right from the start of their insertion in the en-
vironment, to be valuable elements in the local ecological
network, because they achieve, in the short term, inverte-
brate biodiversity levels comparable to those of natural
wetlands. Artificial ecosystems such as constructed wet-
lands mitigate the local aquatic habitat loss and can be
considered effective not only for wastewater treatment but
also in restoration projects.

Habitat heterogeneity is the most relevant factor that
influences taxa richness. Independently from the wetland
origin, the higher the availability of different habitats, the
higher the taxa richness. This aspect could and should be
taken into account in the design of constructed wetland in
order to enhance their positive environmental impacts by
forcing their role as biodiversity pools. Water quality also
influences the macroinvertebrate community structure.
Despite the comparable overall biodiversity level, con-
structed wetlands with higher pollutant concentrations
show different assemblage compositions, and this can lead
to divergences in ecosystem functionality at long term.
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