1. INTRODUCTION

In many mountainous areas of the world the highest elevations are reached on siliceous crystalline mountain ranges. These sites are often pristine, relatively remote, and included in nature preserves because of their value for biodiversity conservation, recreation, and as storages of a resource of fundamental importance (good-quality water). On siliceous mountains porous aquifers are more widespread, and this favors water quality compared to rapid transport in karst conduits in carbonate mountains. Moreover, on the contrary to what happens on carbonate mountains, the siliceous bedrock favors the persistence of water also at the surface, and a wide variety of aquatic habitats (high-mountain lakes and streams, springs, pools, mires) can numerously occur. These siliceous, low-conductivity, high-mountain habitats are being shown to host benthic diatom assemblages of high species richness, including high proportions of Red List (Lange-Bertalot 1996) species (mire-pools, Cantonati et al. 2011; springs, Cantonati 1998a; high-mountain lakes, Tolotti 2001).

Among this category of crystalline, high-mountain, low-conductivity environments, dystrophic habitats (seepages, mire pools) were pointed out to be of special importance, not only for the diatom assemblages (e.g., Cantonati et al. 2009; Cantonati et al. 2011) but also for the meiofauna (e.g., Gerecke et al. 2011).

However, these high-altitude, low-alkalinity systems are highly fragile, because they are very sensitive to airborne acid contaminants (e.g., Psenner & Catalan 1994). Furey et al. (2009), studying diatom assemblages associated with bryophytes in high elevation springs and streams in the Great Smoky Mountains National Park (U.S.A.), found that these were dominated by Eunotia species, that were frequently teratological, apparently because of the release of metals from the bedrock due to interaction with acid depositions.

Acidification due to mineral acids reaching these remote and close-to-pristine ecosystems because of diffuse airborne pollution has been a threat to these habitats recognized during the 1980s. Diatoms are excellent biological monitors for a variety of applications (Smol...
& Stoermer 2010), and in particular paleolimnology provided tools for a detailed reconstruction of lake acidification (Battarbee et al. 2010). In more recent years, characterized by declining acidification and emphasis on environmental and climate change, a new potential threat was recognised in a man-induced increase of organic acids. Large increases in dissolved organic carbon concentrations were observed in rivers draining peatlands (Monteith & Evans 2005). A debate on the causes is ongoing. Freeman et al. (2001a) recognized in the inhibition of the activity of the enzyme phenol oxidase, that eliminates phenolic compounds preventing degradation, the main enzymic latch to the biodegradation of organic compounds in peatlands. Raising temperatures due to global warming might increase its activity (Freeman et al. 2001b), since phenol oxidase shows a higher activity at higher temperatures and in the presence of oxygen: the aeration of peatlands that might be induced by draughts predicted by climate-change models would be particularly relevant to this respect (Freeman et al. 2001a). According to Freeman et al. (2004) stimulation of primary productivity mediated by increasing atmospheric carbon dioxide concentrations would be more important than increased river discharge, and shifting trends in the proportion of annual rainfall arriving in summer.

The acidification threat fostered large research projects on alpine lakes in Europe (in particular AL-PE, Cameron et al. 1999) and in North America (in particular PIRLA, Camburn & Charles 2000), and some investigations on the diatom communities in streams and lakes of acid-sensitive areas in central and northern Europe (e.g., Kwandrans 2007). Camburn & Charles (2000) also stressed the importance of correct identifications of diatom microfloras of acidic/acidified environments, and the relevance of in-depth knowledge on the ecological characteristics of the taxa. More recently, after an extensive study of humic streams in Sweden, Andrén & Jarlman (2008) proposed a diatom-based index to monitor acidification in streams. The abundance of *Eunotia* species (EUNO) is a substantial component of Part 1 of their ACID index.

The genus *Eunotia* Ehrenberg (Bacillariophyta) includes a vast majority of species the ecological optimum of which is in dystrophic to oligotrophic, acidic, mostly low-conductivity waters. This genus has a diversity hotspot in the zone of the tropical pluvial forests, in particular in the Amazonas drainage basin, and a second, less species-rich, distributional peak in the holartic circumboreal zone (Krammer & Lange-Bertalot 1991). Distinct *Eunotia* species are the most characteristic diatoms in naturally acidic waters. Alles et al. (1991) studied 13 of the most common *Eunotia* species in central Europe from the taxonomical and ecological point of view, distinguishing taxa of naturally acidic waters (with optimum or optima coinciding with the humic acids or bicarbonate buffer system or both) from indicators of anthropogenic acidification (with optimum coinciding with the less effective buffer system of aluminium and silicon).

The interest for acidic or acidified environments led to increased attention to *Eunotia* in the last years, with several new species being described, e.g. from an acidic spring in northern Brazil (Burliga et al. 2007), from the Russian Arctic (Kulikovskiy et al. 2010), and from the Asian tropics (Metzeltin 2011). More comprehensive efforts yielded a monograph of *Eunotia* of the Great Smoky Mountains National Park (U.S.A., Furey et al. 2011), and, in particular, the new identification reference for this genus in Europe (Lange-Bertalot et al. 2011).

These recent studies suggest that the genus has a remarkable species richness; it includes more than 600 validly described species according to Lange-Bertalot et al. (2011). Since representatives of the genus are excellently suited not only for monitoring anthropogenic acidification but also for the characterization of the very-diverse diatom communities of naturally-acidic, very low-alkalinity, high-mountain waters, efforts are worth to improve tools for the distinction of naturally-acid from acidified environments (compare Coring 1996; Rott et al. 2009). In the diverse but threatened diatom communities of naturally-acidic and low-alkalinity waters, *Eunotia* species might be especially relevant as indicators of ecological integrity and naturalistic value. Therefore, the present paper uses morphological, ultrastructural, and ecological data to characterize and describe as new to science three *Eunotia* species that were first observed in springs of Nature Parks of the western part of the Autonomous Province of Trento (south-eastern Alps).

2. METHODS

The materials studied to describe the morphological features and assess the distribution of the new species were as follows: all springs (out of the 30 reported in Cantonati 1998a) with alkalinities lower than 100 µeq L⁻¹ (5 sites); all extremely-low alkalinity and conductivity, high-mountain lakes (out of the 16 reported in Tolotti 2001) and sites of occurrence of *Eunotia curta-grunowii* Nörpel-Schempp & Lange-Bertalot (7 s.); epibryon (12 s.) and epilithon (7 s.) samples collected in the frame of a large multidisciplinary Project on springs (CRENODAT 2004-2008) and reported as sites of occurrence of *Eunotia* species even vaguely resembling the new ones; a selection of samples collected in the mires of Danta (Danta di Cadore, Veneto, south-eastern Alps, Italy, 2005-2007; 5 sites).

At the sites where the new species were found (seepages, flowing springs, high-mountain lakes) relevant climatic features (GPS location, altitude, aspect, shading) were assessed, and physical factors (temperature, conductivity, pH, dissolved oxygen, redox potential, turbidity, discharge or water level) were measured in the field with multi-probes. Detailed hydrochemical
analyses (major ions), in some cases including also trace metals, were carried out following standard methodology (APHA 2000). The main microhabitats were sampled separately. Bryophytes were squeezed including some entire plants, about ten cobbles or small boulders were brushed, and surface sediment was collected with a large-bore syringe or a spoon (Cantonati et al. 2007).

Diatom samples were cleaned by adding 37% H₂O₂ and heating to 80 °C for about one hour. Then the reaction was completed by the addition of K₂Cr₂O₇ (Cantonati et al. 2007). Following digestion and centrifugation, the resulting clean material was diluted with distilled water to avoid excessive concentrations of diatom valves that may hinder reliable observations. Cleaned diatom valves were mounted in Naphrax®.

Fresh material was collected in July 2010 in one of the two sites where all of the three new species occur but observation and documentation of plastids was unfortunately impeded by their very-low abundances.

Slides, prepared material, and aliquots of the original samples were deposited in the diatom collection of the Museo Tridentino di Scienze Naturali di Trento (Italy, holotypes of Eunotia cisalpina sp. nov., and of E. insubrica sp. nov.; the holotype of E. fallacoides sp. nov. is stored in the Lange-Bertalot collection at the Senckenberg Museum, FR, Frankfurt Germany). Isotype slides, and aliquots of raw and prepared material from the same locality and substratum were sent to the Curators of the Diatom collection Botanischer Garten und

Botanisches Museum Berlin-Dahlem, Freie Universität Berlin (Berlin, Germany), and ANSP Diatom Herbarium (The Academy of Natural Sciences of Philadelphia, USA). In the case of E. fallacoides sp. nov. a further isotype slide is stored in the diatom collection of the Museo Tridentino di Scienze Naturali di Trento.

Light microscope observations and micrographs were conducted using a Zeiss Axioskop 2 microscope (Zeiss, Jena, Germany) equipped with phase-contrast and with an Axiocam digital camera. SEM observations were made at the Museo Tridentino di Scienze Naturali using a LEO XVP (Carl Zeiss SMT Ltd., Cambridge, UK) and at the University of Frankfurt using a Hitachi S-4500 (Hitachi Ltd., Tokyo, Japan) at high vacuum on gold coated prepared material. Terminology of valve morphology is based on Round et al. (1990).

To assess size dimensions and stria density, populations of Eunotia cisalpina sp. nov. and Eunotia islandica Østrup occurring associated in one spring (OC2278) in the south-eastern Alps were evaluated numerically (35 specimens of each species).

3. RESULTS

3.1. Eunotia cisalpina Lange-Bertalot and Cantonati sp. nov. (Figs 1-67, 83-87)

3.1.1. Diagnosis

Valvae valde dorsiventrales. Margines ventrales leniter concavi, margines dorsales biundulati. Depressio

3.1.2. Description

Valves clearly dorsiventral. Ventral margins moderately concave, dorsal margins bi-undulate. The depression between the two dorsal humps is relatively deep (e.g., Figs 11, 14, 27, 35, 40, 42), and usually less pronounced (Figs 2-5), sometimes almost missing (Figs 9-10) in the longer specimens. The outline variability of valve stages during the cell cycle and the terminal fissures and nodules of the raphe are similar to *Eunotia islandica* (Figs 68-74). Length 12.5-30, breadth 5.5-7 μm; striae 16-19 in 10 μm. For external and internal ultrastructure see Figs 83-87. The gently curving distal part of the raphe branches reaches the middle of the valve face at the apices (Figs 83-85). Inside the raphe branches terminate distally in evident, raised helictoglossae. No rimoportulae openings could be seen observing the polar region from outside and inside (Fig. 87). Areolae 35-37 in 10 μm (like *E. islandica*). Measurements carried out on specimens sampled in the type locality (OC2278) showed that post-initial cells (Figs 2-3) of *E. cisalpina* are 47 μm long, 5 μm broad with 17 striae in 10 μm (whereas of *E. islandica* 87 μm long, 9.5 μm broad with 13 striae in 10 μm). Smallest stages (Figs 43-44, 47) are 12-16 μm long, 4.8-5.5 μm broad with 16-20 striae in 10 μm (versus 26-28, 8-9, 13-15 striae respectively). Medium-sized specimens (e.g., Figs 12-15) are 26-32 μm long, 5.5-6.5 μm broad with 16-17 striae in 10 μm (versus 38-50, 9.2-10, 12-15 respectively). Overall, *Eunotia islandica* has a similar outline but it is larger, and possesses less-densely spaced striae (Length 23-72 μm, breadth 10-11 μm, 12-13 striae in 10 μm if the type specimens from Iceland are concerned). Another morphologically similar taxon is *Eunotia subherkiniensis* Lange-Bertalot (Lange-Bertalot et al. 2011): It has a comparable size and dorsal valve margins but is distinguished by a lower stria density, 12-13 in 10 μm, and ends that are more strongly protracted and obliquely truncate (Figs 75-79).
Three new Eunotia species from very-low alkalinity habitats in the Alps

Figs 68-82. LM micrographs of species similar to Eunotia cisalpina Lange-Bertalot et Cantonati sp. nov. found in the same geographic area: Figs 68-74. Eunotia islandica (OC2278, bryophytes, 27/09/2005). Figs 75-79. Eunotia subherkiniensis (Coel di Vigo spring, bryophytes, 28/05/1996), Figs 80-82. Eunotia circumborealis (Danta di Cadore mires, mire pool DAN02, bryophytes, 18-20/07/2005; Fig. 81 from Cantonati et al. 2011 mod.). Scale bar, 10 μm.

Figs 83-87. SEM micrographs of Eunotia cisalpina Lange-Bertalot et Cantonati sp. nov. Figs 83-85 external view. Figs 86-87 internal view. Figs. 83, 85. Coel di Vigo spring, bryophytes, 28/05/1996. Fig. 84. Tatra Mts. Slovakia and Poland. Fig. 86-87. OC2278 (Fig. 86. Sediment. Fig. 87. Bryophytes). Scale bar, 5 μm.

Isotypes. Diatom collection Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin (Berlin, Germany), Code B 40004276, and ANSP Diatom Herbarium (The Academy of Natural Sciences of Philadelphia, USA), Codes: ANSP GC 14454 (isotype slide), ANSP GCM 15139 (cleaned material), and ANSP GCX 15140 (raw material).

Type locality. Seepage spring (Spring name: NBAR3-Pian Venezia; spring considered during the CRENODAT Project, Spring code: OC2278) located (N46°25'29", E10°40'30") at 2278 m a.s.l. in the Stelvio/Stilfser Joch National Park of the Alps, N-Italy. This spring emerges on siliceous metamorphic rocks of the Cevedale Mountain range, and has very low alkalinity, and low concentrations of inorganic P and N (Tab. 1). The dominant bryophyte substratum was formed by the liverwort Scapania uliginosa (Sw. ex Lindenb.) Dumort. Some characteristics of this seepage spring are mentioned also in Cantonati et al. (2009) because it is one of the localities where Microfissurata paludosa Cantonati and Lange-Bertalot was found.

Etymology. The species epithet cisalpina is the Latin term for the Italian part of the Alps, and refers to the localities where this taxon was found at first.

Comparison with similar species. A comparison with the most similar species (E. islandica, and E. subherkiniensis) was carried out directly in the protologue. Eunotia circumborealis Lange-Bertalot & Nörpel-Schempp (Figs 80-82), found by Cantonati et al. (2011) in the very-shallow mire pools of Danta di Cadore (south-eastern Alps, Veneto Region), can resemble medium-large sized specimens of E. cisalpina with only slightly pronounced dorsal humps. However, the outline (in particular the shape of the ends) is different, and stria density is lower (12-19 striae in 10 \(\mu \text{m} \) versus 16-19 in 10 \(\mu \text{m} \)) (Lange-Bertalot et al. 2011). Eunotia diodon Ehrenberg was not differentiated from E. islandica in the past. However, Eunotia diodon s. str. is a much larger species than E. cisalpina, and it has spines or wart-like outgrowths on the dorsal margin that can be seen even at the LM by careful focussing. Moreover, it appears to be confined to the arctic, subarctic, and boreal zones of the Holarctic plant realm, and was not found in the Alps (Lange-Bertalot et al. 2011).
Three new Eunotia species from very-low alkalinity habitats in the Alps

3.2. Eunotia fallacoides Lange-Bertalot and Cantonati sp. nov. (Figs 88-117)

3.2.1. Diagnosis

3.2.2. Description

Figs 88-117. LM micrographs of *Eunotia fallacoides* Lange-Bertalot et Cantonati sp. nov. Figs 88-98. Holotype material (Coel di Vigo spring in the Adamello-Brenta Nature Park, bryophytes, 28/05/1996). Fig. 93. Holotypus. Figs 99-117. Populations from other localities. Figs 99-101. Seepage OC2278, epibryon, 27/09/2005. Figs 102-103. Pool spring AD1857, epibryon, 07/09/2007. Figs 104-111. Epilithon samples taken at different depths in the high-mountain lake Nero di Cornisello (15/09/2004, Figs 104-105, 0-5 μm, Figs 106-110. -18 m, Fig. 111. -21 m). Figs 112-114. Other high-mountain lakes in the Adamello-Brenta Nature Park (Fig. 112. L. ScuroMandrone, epilithon, 20/08/1996; Fig. 113. L. Serodoli, surface sediment, 09/07/1996; Fig. 114. L. Alto di Cima Artuich, epilithon, 01/07/1996). Figs 115-117. Pyrenees, Spain. Scale bar, 10 μm.

Isotypes. Diatom collection Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin (Berlin, Germany), Code B 40 0040747, and ANSP Diatom Herbarium (The Academy of Natural Sciences of Philadelphia, USA), Codes: ANSP GC 14455 (isotype slide), ANSP GCM 15141 (cleaned material), and ANSP GCX 15142 (raw material), and Diatom collection of the Museo Tridentino di Scienze Naturali, Trento, Italy (Code cLIM007 DIAT 13).

Type locality. Flowing (rheocrenic) spring with medium-high discharge (Spring name: Coel di Vigo) located (E10°38'09", N46°05'08"), at 1564 m a.s.l. in the Adamello-Brenta Nature Park (south-eastern Alps). This spring emerges on the siliceous holocrystalline rocks (tonalites) of the Adamello mountain range, and has very low alkalinity, and low concentrations of inorganic P and N (Tab. 1). Ortler (1998) recognized in this spring the plant assemblage characterized by the bryophytes Philonotis fontana (Hedw.) Brid. and Dichodontium palustre (Dicks.) M. Stech (actual nomenclature).

A recent (summer-autumn 2010) collection of bryophytes to study epiphytic diatoms in the initial shaded stretch (about 5 m) of the Coel di Vigo rheocrenic spring produced the following results:

Hygrohypnum duriusculum (De Not.) Jamieson at the springhead, Sca-pania undulata (L.) Dum. dominant in the middle accompanied by some H. duriusculum, S. undulata at the end of the sampled stretch.

Etymology. The name refers to the similarity to Eunotia fallax A. Cleve.

Comparison with similar species was carried out directly in the protologue.

3.3. Eunotia insubrica Lange-Bertalot and Cantonati sp. nov. (Figs 131-151, 159-161)

(?Eunotia arcus var. fallax Hustedt sensu Cleve-Euler 1953, Fig. 463 n (non Hustedt)

3.3.1. Diagnosis

Valvae dorsiventrales. Margines ventrales leniter concavi, margines dorsales convexi. Apicibus curvatis oblique truncatis, rotundatis et saepe dorsi-lateral inflatis. Valvae minus arcuatae quam in Eunotia arcus Ehrenberg s. str. Longitudu 23-37 μm, latitudu 6-8.5 μm. Raphe in facie valvae curti...
Three new Eunotia species from very-low alkalinity habitats in the Alps

3.3.2. Description

Valves dorsiventral. Ventral margins slightly concave, dorsal margins convex. Endings inconspicuously shorter protracted, and obliquely truncate. Valves appearing less arculate than in *Eunotia arcus* s. str., that also possesses distinctly protracted and more or less capitate apices (Fig. 152). Length 23-37 μm, breadth 6-8.5 μm. Raphe very shortly deflected onto the valve face (Figs 159-161). Holotypus hic designatus figure 134.

almost completely hide the helictoglossae (Fig. 160) in which the extremely short distal parts of the raphe branches terminate in the valve face. The presence of a rimoportula was confirmed by detection of the outer opening on one apex (Fig. 161). Other species are not actually similar and are hardly to confuse, like *Eunotia curtagrunowii*. Also the longest specimens of *E. curtagrunowii* have stronger dorsiventral outlines, more densely spaced striae, and slightly longer distal raphe ends (Figs 153-158) (Lange-Bertalot & Metzeltin 1996). Moreover, *E. curtagrunowii* has more marked and deeply impressed areolae (Fig. 163), which are not present in *E. insubrica*. *E. curtagrunowii* has a rimoportula at one end (Figs 162-163) in a position corresponding to that in which this structure was observed in *E. insubrica*.

Holotype. cLIM007 DIAT 1923 (Levade, bryophytes, Diatom collection of the Museo Tridentino di Scienze Naturali, Trento, Italy). Collected by M. Cantonati on the 8th of September 1999. Holotype here designated is Fig. 134.

Isotypes. Diatom collection Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin (Berlin, Germany), Code B 40 0040748, and ANSP Diatom Herbarium (The Academy of Natural Sciences of Philadelphia, USA), Codes: ANSP GC 14456 (isotype slide), and ANSP GCM 15143 (cleaned material).
Type locality. Flowing (rheocrenic) spring with medium-low discharge (Spring name: Levade, CRENODAT -AD2153-, and long-term ecological research spring site since 1995, Gerecke et al. 2011) located (N46°07'23", E10°33'54") at 2153 m a.s.l. in the Adamello-Brenta Nature Park (south-eastern Alps). This spring emerges on the siliceous holocrystalline rocks (tonalites) of the Adamello mountain range, and has very low alkalinity, and low concentrations of inorganic P and N (Tab. 1). The vegetation of this spring was grouped in the association Blindio-Scapanietum undulatae, more specifically in the variant characterized by Cephalozia bicuspidata (L.) Dumort. The liverwort species sampled to study epibryon is Scapania undulata.

Etymology. Primarily, Insubri is the Latin name of a Celtic tribe living formerly at the northern margins of the River Po Plain and pre-Alps (more or less the area of the large Italian peri-Alpine lakes). In terms of plant geography "insubric elements" means species characteristic of the Alpine region in the western part of Trentino (the geographic area around the town of Trento = Tridentum).

Comparison with similar species was carried out directly in the protologue.

3.4. Distribution, ecology, and associated taxa of the three new species

The screening of samples taken from different aquatic habitats of the south-eastern Alps resulted in the finding of one or more of the three new species in ten sites (Tab. 1). These were springs of different morphological types (flowing springs and seepages) and high-mountain lakes but not the mire pools investigated (e.g., Cantonati et al. 2011). Of the three new species, Eunotia fallacoides was the most frequent (found in 7 sites), followed by E. cisalpina (6 sites), whilst E. insubrica was the rarest (4 sites; Tab. 1). Only two sites (the seepage OC2278 and the flowing spring Coel di Vigo) were colonised by all of the three new species. E. cisalpina and E. fallacoides were found both in springs and in high-mountain lakes while E. insubrica was found in springs only. However the finding of this last taxon in a lake in Albania (Fig. 151) suggests that this type of habitat might be suitable for E. insubrica as well.

In the case of Lake Nero di Cornisello, epilithic diatoms' samples collected by scuba divers for the study of the depth distribution were available (MC & Michela Segnana, unpublished data). Their observation revealed that E. fallacoides occurred both in the shallow (-0.5m, Figs 104-105) and in the deep waters (-18 m, Figs 106-110; -21 m, Fig. 111).

All the springs and the lakes where the new species were found have very low alkalinity (<100 μeq L⁻¹), and should be classified as sensitive (<200 μeq L⁻¹) or extremely sensitive (<50 μeq L⁻¹) to acid depositions according to Camarero et al. 1995] very low conductivity (<20 μS cm⁻¹), moderately low pH (5.8-6.9), and are strictly oligotrophic as concerns both phosphorus (TP <9 μg L⁻¹) and nitrogen (N-NO₃ <273 μg L⁻¹) (Tab. 1).

Observations on microhabitat preferences are available only for a part of the springs. As shown also for many other Eunotia species (e.g., Cox 1990; Cantonati 1998a, 2001; Knapp & Lowe 2009; Johansen 2010), the new species were always more abundant on bryophytes than on stones. In the small flowing spring close to the high-mountain lake Cornisello Superiore, for instance, E. cisalpina was twice as abundant (6%) on bryophytes than on stones. In the small flowing spring close to the high-mountain lake Cornisello Superiore, for instance, E. cisalpina was twice as abundant (6%) on bryophytes (Figs 48-52) than on stones (3%, Cantonati 1998b; Figs 53-54).

E. insubrica was always present with very low relative abundances: frequently less than 0.2%, and thus not detected during our standard counts of 450 valves but revealed only by patient scanning of the slides. E. falla-
Eunotia cisalpina reached relative abundance up to 6%.

The most common and abundant associated diatoms were as follows: - most frequent and/or abundant: *Gomphonema amoenum* Lange-Bertalot, *Eunotia intermedia* (Krausk), Nörpel-Schempp et Lange-Bertalot, *E. subarcaudatoides* Alles, Nörpel & Lange-Bertalot, *E. exigua* (Brébi). - rare and Red List species: *Eunotia* (see Lange-Bertalot et al. 2011) belongs probably to *E. insubrica*. Some published records may be ascribable to *E. insubrica* sp. nov.

Our SEM studies on this species, which is usually present in samples only with very low number of valves, yielded particularly interesting results. Besides the presence of a rimoportula at one pole, a well developed pseudoseptum-like structure at the apices could be observed and documented. This type of feature is very rare in the genus *Eunotia*. A similar structure, in which however the septum is more likely to develop at the apices of the valvocopula, was observed in the tropical species *Eunotia carenae* Metzeltin et Lange-Bertalot (Metzeltin & Lange-Bertalot 2007).

Most species of the genus *Eunotia* are very well adapted to low-conductivity, acidic waters, caused by both mineral and organic acids. Moreover, review of the literature (e.g., Veselá & Johansen 2009 who found *Eunotia* to be one of the two most prominent genera in ephemeral headwater streams; the review paper on aerophilous diatoms by Johansen 2010; Souffreau et al. 2010 who showed the ability of vegetative cells of some *Eunotia* species to survive heating) appears to suggest that many *Eunotia* taxa must have developed efficient survival strategies to overcome temporary desiccation of their habitats. This might apply also to the new species found to occur as well in low-discharge springs and in the shallow littoral waters of high-mountain lakes that present some natural seasonal water-level fluctuation (in several cases exacerbated in the past, and in some cases still today, by water diversion for hydropower production or to obtain drinking water, MC & Manel Leira unpublished). *Eunotia exigua*, which was found to occur in many of the springs and lakes where the three new species were found, was one of the diatom species with the lowest hydroperiod optima estimated by the WA model, i.e. it colonized mainly ponds with short water permanence (Geiser et al. 1998).

The diatom assemblages of close-to-pristine, low-conductivity, naturally-acidic, high-mountain springs and lakes possess a high species richness, and include high proportions of rare and Red List taxa (Lange-Bertalot & Tolotti 2001). This was confirmed also by the slide examinations carried out to improve our knowledge on the distribution of the three new species in the south-eastern Alps. These observations allowed to document new sites of occurrence for some recently described species (e.g., *Eunotia glacialispinosa* in some cases known only from a very restricted number of sites (e.g., *Navicula cantonatii*).
On the other hand these extremely-fragile, low-alkaliinity habitats are menaced by several impacts, the main one being acidification. The relevance of pH as an environmental determinant for diatom distribution is well known, and several diatom training sets were produced to infer the pH history of lakes (e.g., Marchetto & Schmidt 1993; Battarbee et al. 2010). Diatoms have thus been used since some decades to assess acidification in aquatic habitats (e.g., Coring 1993, 1996; Cameron et al. 1999; Andrén & Jarlman 2008; Battarbee et al. 2010). In the last years, increased release of organic acids from peatlands was observed (e.g., Monteith & Evans 2005), and hypothesised to be due to a series of environmental (increased atmospheric CO₂) and climate-change (increased temperature, droughts, and other changes in hydrology) related mechanisms (Free- man et al. 2001, 2004). This might add new forms of acidification to the traditional acidifying action of airborne inorganic nitrogen and sulphur compounds. In high-elevation, remote, protected areas, acid precipitation was hypothesised (Furey et al. 2009) to interact with bedrock geology determining the release of metals (namely Al, Ba, and Mn) able to induce teratologies in *Eunotia* species (in particular *E. subarcuatoidea*, frequently occurring also in many of the springs and lakes where the three new species described in the present paper were found).

In this context, the genus *Eunotia*, including a majority of species that react in a characteristic way to one or more buffer systems that become active at different pHs in naturally-acid and acidified systems (e.g., Alles et al. 1991), should be of special relevance. We believe that it is particularly important to characterize the diatom assemblages of both naturally-acidic (diatom biodiversity conservation and integrity monitors) and acidified (acidification monitors) aquatic habitats, and to improve tools to distinguish between the two situations.

ACKNOWLEDGEMENTS

This work was carried out while MC was Associate Researcher of the ISE CNR. Special thanks go to: Dr. N. Angeli for precious assistance during SEM work, and for the fitting out of the plates; Prof. A. Witkowski, and to Dr. Malgorzata Bak for making available useful literature; the Autonomous Province of Trento (University & Research Service) for funding the CRENODAT Project (Biodiversity assessment and integrity evaluation of springs of Trentino – Italian Alps – and long-term ecological research, 2004-2008); the Adamello-Brenta Nature Park for funding research on high-mountain springs and lakes that generated several of the materials used for this study, in particular the ACQUA-TEST_PNAB Project, that uses selected aquatic habitats in the nature preserve to monitor environmental and climatic change, 2008-ongoing); Dott. J. Gabrieli (Veneto Environmental Agency, Dept. of Belluno) for making available part of the hydrochemical data; Dr. Daniel Spitalè for data on the bryophytes; and Mr. Manfred Ruppel, University of Frankfurt, for assistance during SEM work in Germany.

REFERENCES

Three new Eunotia species from very-low alkalinity habitats in the Alps

Coring, E. 1996. Use of diatoms for monitoring acidification in small mountain rivers in Germany with special emphasis on “Diatom Assemblage Type Analysis” (DATA). In: B.A. Whitten & E. Rott (Eds), Use of algae for monitoring rivers II: 7-16.

Received: March 2011
Accepted: May 2011