The recent invasion of *Rutilus rutilus* (L.) (Pisces: Cyprinidae) in a large South-Alpine lake: Lago Maggiore

Pietro VOLTA* and Niels JEPSEN1)

CNR-Institute of Ecosystem Study, L.go Tonolli 50, I-28922 Verbania Pallanza, Italy

1)European Commission - Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, I-21020 Ispra, Italy

*e-mail correspondig author: p.volta@ise.cnr.it

ABSTRACT

Very recently, a common cyprinid fish species at northern latitude, the roach (*Rutilus rutilus* L.) has been observed in the large south-alpine Lago Maggiore for the first time. The colonization of the lake has the characteristics of an invasion. In order to investigate this new fish population, benthic multi-mesh and commercial gill nets were used to sample fish in a wide gulf in the central part of the lake (Golfo Borromeo) from February to October 2006. In total 779 roach (TL: 5.5 – 38.8 cm) were caught, aged, sexed and stomach analyzed. Fecundity was assessed by counting the eggs in ripe gonads of females of age 3 and 4. The roach have become clearly the dominant species in the catches, constituting over 70% of the biomass and 70% of the numbers caught. None of the roach exceeded 8 years in age. They grow very fast (Φ’ = 2.55) and have high fecundity (F abs = 13740 ±4700 S.D. at age 3 and F abs = 14768 ±5642 S.D. at age 4). The diet spectrum is wide and characterized by a strong seasonality. In early spring algae (benthic and planktonic algae), benthos and detritus prevail, whereas in summer zooplankton is the most frequent food item. In autumn roach switch back to benthos and detritus. Algae occur more frequently in young specimens while zooplankton, benthos and detritus in adults. The roach population is practically unimpacted by fishing. The minimum legal mesh size (25 mm) of gillnets, used by commercial fishermen, selects roach at the mean LT of 21.2 cm, which is over its length at maturity. The results suggest that roach established a viable population in Lago Maggiore less than a decade ago and rapidly became one of the dominant (if not the dominant) fish species. The possible consequence for the fish fauna in general and for the ecological status of the whole lake is briefly discussed.

Key words: Gill nets, deep lakes, exotic species, cascade effects

1. INTRODUCTION

The structure of fish assemblages in lakes depend on multiple ecological processes over varying temporal and spatial scales. Factors that have been identified as important in structuring northern temperate fish assemblages are physicochemical factors (Tonn & Magnusson 1982; Rahel 1986; Persson 1997), productivity (Marshall & Ryan 1987; Gibson & Headrich 1988), lake depth and lake size (Rahel 1986; Jackson & Harvey 1989). Human alterations to aquatic ecosystems such as habitat degradation and introduction of exotic species can also have profound effects on fish assemblages (Cambray 2003; Goren & Galil 2005).

During the last 50 years, Italian lakes have been heavily affected by anthropogenic pressures such as organic (Mosello & Giussani 1997) and chemical pollution (Galassi et al. 1981; Volta et al. 2008) but also by erroneous fish management and stocking practices often characterized by the introduction of alien species. After the 1950s the presence of exotic species in Italy increased rapidly and the adverse effect of these invaders is now a major problem for the local fish fauna (Bianco 1998; Bianco & Ketmeier 2001; Gherardi et al. 2008).

Roach *Rutilus rutilus* (L.) is one of the most recent exotic species appearing in Italian freshwaters. Originally restricted to Central and Eastern Europe (Banarescu et al. 1971), roach has now spread to most of Europe (Kottelat & Freyhof 2007). In Italy it was first introduced in Tuscany for recreational purposes and then spread to the Po River basin (Delmastro & Balma 1991) where it is now found in large, deep sub-alpine lakes, reservoirs, rivers as well as in several shallow lakes. Many aspects of the biology of roach populations of central and northern Europe have been investigated and a wide and detailed literature is available (e.g., Kempe 1962; Hellawell 1972; Ponton & Gerdeaux 1987; Chappaz et al. 1990; Garcia-Berthou 1999). However, the knowledge on (invasive) roach populations in southern countries is scarce and fragmentary (Garcia-Berthou 1999; Guthruf 2002).

The aim of this study was to investigate a newly established roach population in a large lake. The results are compared with those of roach populations in other European countries and possible mechanisms of competition with native species are discussed.

2. MATERIALS AND METHODS

2.1. Study area

Lago Maggiore, a warm-monomictic pre-alpine lake of 212.5 km², is situated in north-western Italy at an altitude of 193.5 m (45°57’N, 8°33’W, Greenwich). Its
maximum depth is 370 m and mean depth is 177 m. From being naturally oligotrophic, the lake underwent human-induced eutrophication starting from the middle of 1960s. It approached mesotrophy at the end of 1970s (Mosello & Ruggiu 1985), when in-lake total phosphorus (TP) concentration reached its maximum value (ca. 40 µg L⁻¹ at spring overturn). As a result of improved sewage treatment and phosphorus reduction in detergents, TP in the lake decreased to about 12 µg L⁻¹. In 1942 a hydropower facility was build at the outlet of the lake, causing frequent water level fluctuations of 1-2 meters.

Thirty-two fish species inhabit the Lake (Tab. 1) of which only twenty are native. A century ago, the lake sustained a substantial fishery with over 150 commercial fishers. The number of commercial fishermen decreased from 150 in 1995 to 39 in 2006 (Volta & Romanò 2007). This decline was mainly caused by a temporary stop for commercial fishing due to a severe case of DDT pollution of the lake (i.e., Bettinetti et al. 2006). Fishing on whitefish, landlocked shad, bleak and rudd was prohibited, because contaminants exceeded the threshold for human consumption (0.05-0.1 mg kg⁻¹ b.w. ZDDT depending on lipid content). Thus, fishing only on littoral species, which are of secondary importance, was not sufficient to make an income for the commercial fishers.

2.2. Sampling procedures and data acquisition

The area sampled in this study was confined to a large (ca. 20 km²) and deep (max depth 140 m) gulf in the central region of the lake. Benthic multimesh gillnets (Lundgren, Sweden) were used in February, May, July and October 2006 and additional roach were obtained from commercial benthic gillnets (25 mm, 34 mm and 40 mm knot-to-knot) in March, August and September 2006. Gillnets were set perpendicularly to the shore at a depth between 5 and 40 m. Only the data from benthic multimesh gillnets was used to calculate CPUE.

Fish were measured (total length, Lₜ), weighed (total body mass, Wₜ). Sex was determined by dissection. Ten scales from the left side, just above the lateral line and under the caudal fin, were removed from each fish and used for age determination. May 1st was chosen as the passage of the year.

2.3. Data analysis

The relationship between Lₜ and Wₜ was calculated for all specimens and for males and females separately using the allometric model:

\[Wₜ = a \times Lₜ^b \]

where Wₜ is fish total body mass in grams, Lₜ is total length in cm, a is a constant and b the allometric coefficient. Length-at-age data were used to estimate the parameters of the Von Bertalanffy (1938) growth function VBGF:

\[Lₜ = L∞ \left(1 - e^{-k(t_0 - t)}\right) \]

where Lₜ is the total length of the fish at time t, L∞ is the ultimate length an average fish could achieve, k is the growth constant which determines how fast the fish approach L∞ and t₀ is the hypothetical age at Lₜ=0. The \(\Phi' \) Phi'-prime (Pauly & Munro 1984) index was calculated to compare the growth performance of roach as:

\[\Phi' = \log(k) + 2\log(L∞) \]

where k and L∞ are parameters of VBGF.

The diet analyses were carried out for at least 10 individuals from each age group and for each sampling date. Thus a total of 280 stomachs were analyzed. Age groups were defined on the base of the number of annuli identified on the scale. The gut content was analyzed

Tab. 1. Fish species composition of Lago Maggiore. For non native species the estimated (or documented) time of introduction is indicated.

<table>
<thead>
<tr>
<th>Native</th>
<th>Non-native</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake trout (Salmo trutta Linneus 1758)</td>
<td>Common whitefish (Coregonus lavaretus Linneus 1758) (1861)</td>
</tr>
<tr>
<td>Landlocked shad (Alosa alosa Kottelat & Freyhof 2007)</td>
<td>Alpine char (Salvelinus alpinus Linneus 1758) (1896)</td>
</tr>
<tr>
<td>Pike (Esox lucius Linneus 1758)</td>
<td>Pumpkinseed (Leuciscus gibbosus Linneus 1758) (1930)</td>
</tr>
<tr>
<td>Perch (Perca fluviatilis Linneus 1758)</td>
<td>Largemouth bass (Micropterus salmoides Linneus 1758) (1930)</td>
</tr>
<tr>
<td>Carp (Cyprinus carpio Linneus 1758)</td>
<td>Black bullhead (Ameiurus melas Rafinesque 1820) (1930)</td>
</tr>
<tr>
<td>Tench (Tinca tinca Linneus 1758)</td>
<td>Whitefish (Coregonus macrophthalmus Nusslin 1882) 1949</td>
</tr>
<tr>
<td>Chub (Squalius cephalus Kottelat & Freyhof 2007)</td>
<td>Pikeperch (Sander lucioperca Linneus 1758) (1990)</td>
</tr>
<tr>
<td>Bleak (Alburnus alburnus Linneus 1758)</td>
<td>European catfish (Silurus glanis Linneus 1758) (1990)</td>
</tr>
<tr>
<td>Rudd (Scardinius erythrophthalmus Linneus 1758)</td>
<td>Crucian carp (Carassius carassius Linneus 1758) (1990)</td>
</tr>
<tr>
<td>Minnow (Phoxinus phoxinus Linneus 1758)</td>
<td>Roach (Rutilus rutilus Linneus 1758) (1993)</td>
</tr>
<tr>
<td>Italian nase (Chondrostoma sêtta Linneus 1758)</td>
<td>Bitterling (Rhodeus amarus Linneus 1758) (1995)</td>
</tr>
<tr>
<td>Triotto (Rutilus auto Bonaparte 1841)</td>
<td>Ruffe (Gymnocephalus cernua Linneus 1758) (1995)</td>
</tr>
<tr>
<td>Danube roach (Rutilus pisus Lacepède 1803)</td>
<td>Padanian barbel (Barbus plebejus Linneus 1758)</td>
</tr>
<tr>
<td>Freshwater benny (Salaria fluviatilis Asso 1801)</td>
<td></td>
</tr>
<tr>
<td>Goby (Pseudogobius bonelli Bonaparte 1846)</td>
<td></td>
</tr>
<tr>
<td>Bullhead (Cottus gobio Linneus 1758)</td>
<td></td>
</tr>
<tr>
<td>Stonelooch (Cobitis tenia Linneus 1758)</td>
<td></td>
</tr>
<tr>
<td>Eel (Anguilla anguilla Linneus 1758)</td>
<td></td>
</tr>
<tr>
<td>Burbot (Lota lota Linneus 1758)</td>
<td></td>
</tr>
</tbody>
</table>
The recent invasion of *Rutilus rutilus* in Lago Maggiore

under a stereomicroscope to detect prey items. For each food category the frequency of occurrence was calculated as:

\[F\% = \frac{n \times N^{-1}}{} \times 100 \]

where \(n \) = number of guts where each category is present; \(N \) = total number of guts.

Sex ratio (females:males) was determined. Gonadosomatic index (GSI\%) at maturity was calculated as:

\[GSI(\%) = \frac{W_G \times W_T^{-1}}{} \times 100 \]

where \(W_G \) is the mass of the gonad and \(W_T \) the total body mass of the fish. Length at first maturity \(L_m \) was calculated according to Froese & Binohlan (2000). Absolute and relative fecundity were also calculated by counting eggs of ripe gonads. Absolute fecundity was:

\[F_{abs} = W_G \times N \times W_S^{-1} \]

where \(F_{abs} \) = absolute fecundity; \(W_G \) = mass of the gonads; \(W_S \) = mass of the subsample; \(N \) = number of the eggs in the subsample. Relative fecundity (\(F_{rel} \)) was calculated according to:

\[F_{rel} = \frac{F_{abs} \times W_T}{1000} \]

where \(F_{abs} \) is the absolute fecundity and \(W_T \) is the total body mass of the fish in grams.

The total instantaneous mortality (\(Z \)) was calculated by the linearized catch curve (Sparre & Venema 1988) using fish captured with multimesh gillnet. A rough estimation of the natural mortality rate \(M \) was calculated using the empirical equation of Pauly (1980), which provide an estimate of \(M \) on the base of \(L_\infty \) and \(k \) of VBGF, and the annual mean water temperature.

Differences in growth and GSI between males and females were tested by \(t \)-test, ANOVA and ANCOVA.

3. RESULTS

Seven fish species were captured in the multimesh gillnets (Fig. 1): roach (*Rutilus rutilus*), perch (*Perca fluviatilis*), burbot (*Lota lota*), pikeperch (*Sander lucioperca*), rudd (*Scardinius erythrophthalmus*), and whitefish (*Coregonus* sp.). Roach was clearly the dominant species in the catch of the multimesh gillnets and occurred on all sampling dates; 440 roach were captured in the multimesh nets where the CPUE ranged from 1100 g net\(^{-1}\) in February to 2850 g net\(^{-1}\) in October. A total of 339 individual roach were obtained from commercial gill nets.
Total instantaneous mortality rate Z is 0.60 y\(^{-1}\) with a natural mortality M of 0.57 y\(^{-1}\) estimated by the equation of Pauly (1980) ($K = 0.35$ e $T^o = 13\, ^\circ$C), indicating very low fishing pressure.

3.1. Size, age, sex and age distribution of roach

In total (multimesh and commercial nets), 779 roach were captured, 403 (52%) being females, 288 (37%) males and for 88 (11%), sex was not established. Mean age was 3.2 y for females and 2.9 y for males. Age and sex distribution is plotted in figure 2.

The total length of roach ranged from 5.5 to 38.8 cm (mean: 20.8 ±5.11 S.D.) for all individuals, 15.6 to 38.0 cm (mean: 23.4 ±3.1 S.D.) for females and 14.1 to 32.8 cm (mean: 21.0 ±3.0 S.D.) for males. Mean total body mass was 115 g (S.D. = 70.1) for all roach and 142 g (S.D. = 65.4) and 110 g (S.D. = 56.1) for the females and males respectively. Overall, males were significantly smaller than females (t-test, $df = 689$, $P < 0.001$).

3.2. Growth

The length-weight relationship was for both sex pooled ($n = 779$, $r^2 = 0.99$, $P < 0.005$), for females ($n = 403$, $r^2 = 0.99$, $P < 0.005$) and for males ($n = 288$, $r^2 = 0.98$, $P < 0.005$). The high b values (>3) indicate a positive allometric growth. A highly significant difference was found in growth between females and males (t-test, $df = 691$, $P < 0.001$, sex as factor and age as covariate).

Length at age 0^+ of the indistinct sample was used for the calibration of the VBGF. Asymptotic length was 35.75 cm (C.I.95% = ±0.59) for the total sample, and 31.40 (C.I.95% = ±0.64) for males and 36.83 (C.I.95% = ±0.62) females. The Von Bertalanffy growth function was:

- $L_f = 35.75(1 - e^{-0.294(1-0.40)})$ for pooled sex,
- $L_f = 36.83(1 - e^{-0.286(1-0.305)})$ for females,
- $L_f = 31.40(1 - e^{-0.386(1-0.26)})$ for males.

3.3. Diet

Based on scale readings, four age groups were defined. They were characterized by the presence of 1, 2, 3 and ≥4 annuli. A total of 280 guts were analyzed. The percentage of full stomachs increases along the season, peaking (99%) at the end of the summer and reaching the lowest value in winter (70%).

The diet spectrum is wide and characterized by a strong seasonality (Fig. 3). In February and March algae (benthic and planktonic) (100%), benthos (75%) and detritus (50%) prevail, whereas in summer zooplankton constitute up to 63% (July) of the diet. In autumn roach switch back to benthos and detritus while algae continue to decrease. Within benthos Dreissena polymorpha, Pisidium sp., Ostracoda and insect larvae (trichoptera and ephemeroptera) are the most frequent food items.

![Fig. 2. Age distribution of males and females roach in the whole sample. 0+ fishes (age class I) are excluded.](image)

![Fig. 3. Occurrence (%) of food categories in roach diet during 2006.](image)
<0.001) between females (15.97 ±5.69 S.D.) and males (3.99 ±2.50 S.D.).

Absolute fecundity is 13740 ± 4700 (S.D.) at age 3 and 14768 ±5642 (S.D.) at age 4 and increases with size (linear regression, $r^2=0.75$, $n = 20$, $P = 0.001$). The regression is: $F_{abs} = 2737.1 \times LT - 40053$. Mean relative fecundity F_{rel} is 166510 ±30309 (S.D.) at the age 3 and 189382 ±25320 (S.D.) at the age 4.

4. DISCUSSION AND CONCLUSIONS

Like in most other southern European lakes, the fish community in Lago Maggiore consists of a mix of native and exotic species (Tab. 1). Apparently native and non-native species have been able to coexist without drastic changes in the whole community. Such changes may actually have occurred, however, in the absence of systematic monitoring, evidence of this is only circumstantial. The recent appearance of roach in Lago Maggiore has been a rather dramatic event and now roach seems to be the most abundant fish in the lake. If the roach population stabilises at a much lower abundance level than at present, “peaceful coexistence” may be observed, but if not, serious ecosystem effects may become evident. The roach has probably been introduced by anglers or more likely in water diverted from Lake Lugano to Lago Maggiore during a flood event.

The appearance of roach in Lago Maggiore is higher than reported from most other European waters (Tab. 2). The Φ values increase from northern to southern Europe. Also the VBGF k parameter, which determines how fast a fish approach L_∞, is higher in the southern regions (Chappaz et al. 1989; Guthruf 2002; this study) than in central or northern European countries (Kenpe 1962; Cragg-Hine & Jones 1969; Burrough & Kennedy 1979; Wiesky & Zalachovsky 2000). It is quite surprising that the growth of roach in the oligo-mesotrophic Lago Maggiore is only slightly lower than in the eutrophic Lake Lugano (Guthruf 2002), indicating an abundant food source in Lago Maggiore. Manca et al. (2007) have found that the recent increase in water temperature in Lago Maggiore during spring (due to climate changes) has caused earlier development and an increased density of cladocerans. For spring spawners, like roach, this can be a great advantage because the availability of food in the first life stages has great importance for the survival and growth of young larvae. Furthermore, in contrast to other cyprinids the temperature sensitivity (routine metabolic rate) of juvenile roach in the range between 5 and 10°C has been shown to be extremely high ($Q_{10} = 5.8$) suggesting an ability to efficiently utilise high plankton densities at low temperatures (Hölker 2006).

The diet of roach in Lago Maggiore seems rather similar to that reported in the literature (Niederholzer & Hofer 1980; Rask 1989; Horppila 1998; Lappalainen et al. 2001; Guthruf 2002), but the roach in this study did not eat macrophytes, unlike in other lacustrine environments (Niederholzer & Hofer 1980; Horppila 1998; Guthruf 2002; Hölker et al. 2002). This may be due to the low abundance of aquatic plants in Lago Maggiore caused by low nutrient concentration of the lake, fluctuating water levels and the steep littoral zone as found by Niederholzer & Hofer (1980) in a Tyrolean lake and by Garcia-Berthou (1999) in the Banyoles Reservoir.

The proportion of full guts increases with water temperature. This has been found in many fish species and also in roach (Hellawell 1972). It must be noted that the feeding activity of juvenile roach, even if decreased, remains quite high year round and the metabolism of roach remain high at low water temperatures (4 °C and 10 °C, Van Dijk et al. 2002), close to the minimum water temperature (6.5 °C) of Lago Maggiore in winter.

Roach are omnivorous and able to modify the diet in relation to the food availability. Thus, Townsend et al. (1986) found that roach switched to copepods when the density of small cladocerans was lower than 40 ind L⁻¹. Giles et al. (1990) found that roach in two British lakes fed on Daphnia sp. or on Spyrogira sp. depending on their abundance. Also in Lago Maggiore the roach diet changes seasonally from benthos-based towards zooplankton-based when the lake productivity becomes higher. The same seems to apply for the presence of detritus in winter. When the lake productivity is low, as in winter and early spring, the roach switch to all available food resources, in order to optimize energy intake or they even abandon the lake (and feeding) to seek refuge from predation in small streams, canals or backwaters (Jepsen & Berg 2002).

Fecundity values are quite high and more similar to those found in mesotrophic or eutrophic lakes or rese-
are engaged in a predator-prey interaction but also com-
effect on the perch populatio n. Both fishes are omnivo-
rous, coexisting currently in an intraguild predation
system (IGP) where perch becomes a top predator and
large roach population will have a serious negative
dance of roach compared to perch. It is likely that a
water levels) may be of benefit for the roach.

The artificial water level fluc tuations in Lago Maggiore
no predictable pattern to which organisms can adjust.
shoreline, sometimes dry, sometimes flooded but with
natural fluctuations in water level, resulting in a sterile
lake due to the lack of a tr ue littoral zone caused by un-
rudd and bleak larvae.

Roach are able to use a wide range of spawning grounds
such as bedrocks, sand or mud (Volta pers. obs.). This
gives the roach an advantage against the rudd which is a
typical phytophilic fish species (Niederholzer & Hofer
1980; Ravera & Jamet 1991; Garcia-Berthou & Moreno-Amich 2000). Moreover, roach spawn between March and late May, at least one month earlier than rudd and bleak. This is an advantage because roach lar-
vae have the possibility to use the seasonal lake produc-
tion earlier than rudd and bleak. Indeed, as have been
found by Guhtruf (2002) in Lago di Lugano, roach lar-
vae are found in the littoral zones one month earlier than rudd and bleak larvae.

According to Moss (2008) a reservoir is a disabled
due to the lack of a true littoral zone caused by un-
natural fluctuations in water level, resulting in a sterile
shoreline, sometimes dry, sometimes flooded but with no predictable pattern to which organisms can adjust. The artificial water level fluctuations in Lago Maggiore may be an advantage for roach in competition with other species because roach are highly flexible in their habitat use (Brenner 1973; Gliwicz et al. 2000; Jacobsen et al. 2004). Pike is a principal important predator for roach, but pike are not very abundant in Lago Maggiore, despite sporadic fry stockings (A. Calderoni, pers. comm.), and the apparent decrease in the pike population (possibly caused by fluctuating water levels) may be of benefit for the roach.

The present results may not be representative for the whole lake, but they indicate an overwhelming abundance of roach compared to perch. It is likely that a large roach population will have a serious negative effect on the perch population. Both fishes are omnivo-
rous, coexisting currently in an intraguild predation system (IGP) where perch becomes a top predator and roach is intermediate consumer (IC). The two species are engaged in a predator-prey interaction but also com-
peete for basic resources. Perch is zooplanktivorous and benthivorous before switching to piscivory. As pointed out by Van de Wolfshaar et al. (2006) and Persson et al. (2007a) size dependent food web interactions can inhibit coexistence of top predator and IC in intraguild predation systems with life history omnivory. At small sizes, the predator may compete with its prey whereby the prey may limit the extent to which predator indi-
viduals are recruited to larger predatory stages, inducing an interspecific juvenile bottleneck in the predator (Neill 1975; Olson 1996; Byström et al. 1998). Analyses of IGP models (Persson et al. 2007a) shows that at low productivity levels, the top predator cannot persist, either because the availability of resources is too low for its existence or because it is out-competed by the inter-
mediate consumer, despite the fact that the system pro-
vides enough resources for its persistence. Lago Maggiore perch also prey on bleak and on the freshwater
blenny (P. Volta, unpubl.). Thus, the predation pressure on roach may not be as heavy as in other lakes of the same trophic status, where the roach is the main prey for piscivorous perch.

The roach population in Lago Maggiore is practi-
cally unimpacted by fishing. The minimum legal mesh size (25 mm) of gillnets, used by commercial fishermen principally for perch, selects roach at the mean LT of 21.2 cm, which is over its length at maturity. This means that most roach have at least one spawning sea-son before becoming liable to capture in the nets.

Interestingly, the very recent invasion of roach in Lago Maggiore corresponds both with the sharp decrease of fishing pressure and with the return of the lake to an oligotrophic state, which occurred in the 90s. As pointed out above, in the light of IGP view, the oligotrophic status of Lago Maggiore seems to be more beneficial for the roach than other fish species and in particular perch.

How the roach will influence the native Rutillus spec-
ies in Lago Maggiore is not known. Due to very lim-
ited information it is mainly speculation, but the last ten years their abundance has decreased. Only one R. pigus and one R. aula were captured in the fish survey nets. It

<table>
<thead>
<tr>
<th>Site</th>
<th>L_{opt}</th>
<th>k</th>
<th>t_{0}</th>
<th>Φ^1</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaren, S</td>
<td>25.6</td>
<td>0.16</td>
<td>-0.63</td>
<td>2.02</td>
<td>Kempe 1962</td>
</tr>
<tr>
<td>Slapton Lay, GB</td>
<td>22.95</td>
<td>0.20</td>
<td>0.20</td>
<td>2.02</td>
<td>Burrough & Kennedy 1979</td>
</tr>
<tr>
<td>Lake Dabie, P</td>
<td>26.3</td>
<td>0.156</td>
<td>-1.172</td>
<td>2.03</td>
<td>Wiesky & Zalachovsky 2000</td>
</tr>
<tr>
<td>Szczecin Lagoon, P</td>
<td>23.7</td>
<td>0.242</td>
<td>0.008</td>
<td>2.13</td>
<td>Wiesky & Zalachovsky 2000</td>
</tr>
<tr>
<td>Pomeranian Bay, P</td>
<td>33.2</td>
<td>0.139</td>
<td>-0.299</td>
<td>2.14</td>
<td>Wiesky & Zalachovsky 2000</td>
</tr>
<tr>
<td>Tjeakmeer, NL</td>
<td>20.65</td>
<td>0.23</td>
<td>-0.23</td>
<td>1.99</td>
<td>Goldspink 1979</td>
</tr>
<tr>
<td>Lago St. Croix, F (O)</td>
<td>28.38</td>
<td>0.29</td>
<td>0.18</td>
<td>2.37</td>
<td>Chappaz et al. 1989</td>
</tr>
<tr>
<td>Foitheringhay, GB (r)</td>
<td>19.7</td>
<td>0.25</td>
<td>0.34</td>
<td>1.99</td>
<td>Cragg-Hine & Jones 1969</td>
</tr>
<tr>
<td>Lake Aydat, F</td>
<td>25.6</td>
<td>0.16</td>
<td>-0.63</td>
<td>2.02</td>
<td>Jamet et al. 1994</td>
</tr>
<tr>
<td>Lake Geneve F (E)</td>
<td>34.44</td>
<td>0.21</td>
<td>-0.26</td>
<td>2.40</td>
<td>Ponton & Gerdeaux 1990</td>
</tr>
<tr>
<td>Lago di Lugano, CH</td>
<td>36.8</td>
<td>0.3</td>
<td>/</td>
<td>2.61</td>
<td>Guthruf 2002</td>
</tr>
<tr>
<td>Lago Maggiore</td>
<td>35.75</td>
<td>0.29</td>
<td>-0.40</td>
<td>2.55</td>
<td>This study 2006</td>
</tr>
</tbody>
</table>

Tab. 2. VBGF parameters and Φ^1 values of different roach populations in northern emisphere. (r)= river, (O)= oligotrophic environment, (E)= eutrophic environment; F = France, S = Sweden, GB = Great Britain; NL = Nederland; P = Poland, CH = Switzerland.

P. Volta & N. Jepsen
is known that roach can hybridize with *R. pigus*, i.e. it happens in Lago di Como (Romanò, pers. com). This could also be a problem for the persistence of the endemic *R. pigus* in Lago Maggiore.

In conclusion there has been a genuine invasion of roach into Lago Maggiore and through the last few years this exotic species have become dominant in the area surveyed. The reason is largely unknown and the ecological effects can only be surmised. The roach grow fast; have high fecundity and low mortality; conditions within the lake appear to be optimal for colonisation. Population control through predation or fishing is not evident, therefore the number of roach in the lake is not likely to decrease significantly in the near future.

In general the fish community in Lago Maggiore seems to be unstable, probably due to interspecific competition in littoral fish species and hydromorphological pressures that, through water level fluctuations, have crippled the littoral zone. The variation in nutrient load and the swing between oligo- and mesotrophic conditions has also played a role in destabilising the fish fauna. Predator stocking and prey culling can be used as management tools to counteract low levels of top predators. It has been shown (de Roos & Persson 2002; de Roos et al. 2003) that piscivore stocking must be very intense to be successful and hence is not a practical management strategy in large lakes. Prey culling may be a more realistic approach to improve the status of fish stock in a sustainable way and promote predator recovery (Persson et al. 2007b). The data collected in this study merely provides a starting point in the exploration of the ecology of Lago Maggiore’s fish community and its dynamics. Standardized fish monitoring, as required by the Water Framework Directive, must be regularly performed in the future to follow the development of the fish community in Lago Maggiore.

REFERENCES

Received: June 2008
Accepted: August 2008