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INTRODUCTION 

Freshwater ecosystems constitute hotspots for biodi-
versity and host about half of the world’s fish fauna 
(Hughes, 2021; Maasri et al., 2022). At the same time, 
many freshwater fish populations are under threat from a 
series of anthropogenic effects, including habitat degra-
dation, flow modification, overexploitation, and invasive 
species (Dudgeon et al., 2006; Reid et al., 2019). Knowl-
edge about fish ecology and movement is fundamental 
for the management and conservation of fish populations 
(Fullerton et al., 2010; Smialek et al., 2019). Unfortu-
nately, there is a lack of information on the ecology and 
behaviour of freshwater fish in general and for small-
sized fish species in particular, especially for species with-
out economic and cultural importance (Smialek et al., 
2019; Negro et al., 2021). Telemetry is a common tool for 
studying individual animals’ ecology and movement 
(Cooke et al., 2004; Thorstad et al., 2014). For small-
sized species, Passive Integrated Transponder (PIT) tags 
are widely used. These tags do not have an internal battery 
but transmit a unique signal when placed within the elec-
tromagnetic field of a reader antenna and are hence rela-
tively inexpensive and small, usually 7-32 mm 
(Musselman et al., 2017). The spatial range defined by 
the electromagnetic field limits the detection range of the 
tagged animals and is typically limited to within a few 
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ABSTRACT 

Italian riffle dace (Telestes muticellus, Bonaparte 1837) is a small-bodied Leuciscidae native to the Italian Peninsula, of which little 
is known about the ecology and individual movements in nature. Passive Integrated Transponder (PIT) telemetry is used to track fish 
movements and behaviour. The basic assumption is that the PIT-tagged organism’s performances do not differ considerably from their 
natural behaviour. Here we present the first evaluation of potential tagging effects in the genus Telestes. The survival rate and tag 
retention were compared between two different tag implantation methods – injector gun and scalpel incision - and pit-tagging effects 
on swimming performance were evaluated. Five weeks after tagging, Italian riffle dace demonstrated high survival rates in all treatments: 
94.8% for fish tagged with injector gun (n=58), 100% for scalpel incision method (n=58), and 98.3% for controls (n=58). The tag re-
tention was 96.6% for gun treatment and 100% for scalpel treatment. Prolonged swimming performance, tested 22-23 days after tagging, 
showed a reduction in endurance (time-to-fatigue) for scalpel treatment (n=22) compared to the control group (n=21), while no difference 
in maximum swimming velocity was observed. We conclude that PIT tagging is a suitable technique for Italian riffle dace, showing 
high survival and PIT retention and no effect on maximum swimming speed. Significantly lower prolonged swimming performance, 

although likely less ecologically important, shows that tagging 
is not without costs. Potential biases need to be evaluated on a 
study-by-study basis, and future studies should explore behav-
ioural tagging effects in nature.
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meters or less. (Gibbons and Andrews, 2004). Animals 
are then tracked with fixed (Castro-Santos et al., 1996) or 
portable antennas (Nzau Matondo et al., 2019; Watz et al., 
2019). PIT telemetry is widely used to study the ecology 
and behaviour of fish in marine and freshwater systems 
(Kessel et al., 2014), for example, allowing the study of 
migratory patterns (Brönmark et al., 2008), home ranges 
(Breen et al., 2009), survival (Keeler et al., 2007), activity 
(Závorka et al., 2016) and fish passage performance (Cas-
tro-Santos et al., 1996). The use of telemetry has acceler-
ated our understanding of fish behaviour and has shown 
to be an effective tool in strengthening evidence-based 
river management and conservation efforts (Crossin et al., 
2017). A critical requirement for telemetry is that both the 
tags and the tagging procedure do not substantially affect 
the behaviour of the tagged animals (Brown et al., 2011; 
Crossin et al., 2017).  

Most PIT-tag effects studies on small-sized fish focus 
on survival and tag retention, typically but not always, 
showing high survival and high retention rates (Clark, 
2016; Vollset et al., 2020). Potential behavioural and per-
formance effects caused by PIT tags, on the other hand, 
are much less investigated despite their importance for 
fish behavioural studies in a natural environment (Nyqvist 
et al., 2022). Here, swimming performance represents an 
important ecological trait involving both physical and be-
havioural components that can be quantified in the labo-
ratory (Tudorache et al., 2013). The effects of PIT tagging 
on the swimming performance of small-bodied fish have 
been studied in only a handful of species, where tagging 
has not been shown to affect either prolonged swimming 
performance (Newby et al., 2007; Ficke et al., 2012) or 
maximum swimming speeds (Nyqvist et al., 2022; Swarr 
et al., 2022). Not only the tag but also the tagging proce-
dure (i.e., handling and tagging technique) can have po-
tential effects on the tagged animal (Brown et al., 2011). 
For example, the use of anaesthesia, antibiotics, suturing, 
and capture and holding conditions can potentially affect 
the fish welfare and consequently its behaviour (Mulcahy, 
2003; Brown et al., 2011; Carter et al., 2011; Oldenburg 
et al., 2011). For PIT tags, in particular, two principal tag-
ging techniques are used – surgical incision and needle 
injection. While needle injection is considered a faster 
technique, it has also been associated with higher mortal-
ity among the tagged fish (Baras et al., 1999; Archdeacon 
et al., 2009), but available studies are very few. The 
MK25TM Implant Gun (Biomark, Boise, ID, USA) con-
stitutes a special case of the injection technique, widely 
used (Bjørnevik et al., 2017; Chen et al., 2017) but, to our 
knowledge, not yet scientifically evaluated.   

Italian riffle dace (Telestes muticellus, Bonaparte 1837) 
is a small-sized (typically <15 cm) Leuciscidae native to 
the Italian peninsula, spread both between the Adriatic and 
Tyrrhenian basins, as well as in neighbouring areas of 

France (Bevera stream) and southern Switzerland. It is a 
gregarious rheophilic fish that inhabits piedmont rivers and 
creeks with clear, cold water, but it can also be found in 
lowland springs. It is omnivorous and feeds mainly on 
aquatic invertebrates and epilithic algae. Spawning occurs 
in spring on gravel substrates with swift and shallow water 
(Fortini, 2016). Although genetics and biogeography have 
been studied both on T. muticellus and the genus Telestes 
in general (Stefani et al., 2004; Marchetto et al., 2010; Buj 
et al., 2017), very little is known about the ecology and in-
dividual movements of the species.  

As a prerequisite for studying natural behaviour and 
individual movement of Italian riffle dace in the wild, we 
evaluated tag retention and survival of Italian riffle dace 
tagged using surgical incisions or an injector gun. In ad-
dition, prolonged swimming performance, as well as the 
volitional maximum swimming speed of PIT-tagged fish, 
were compared to untagged control fish in an open chan-
nel flume.  

 
 

METHODS 

Italian riffle daces were collected on 15 November 
2021 with electrofishing in Lemme River, province of 
Alessandria, North-Western Italy (UTM 484564E, 
4947986N, zone 32T), and brought to Predosa Hatchery 
(Predosa, AL, Italy). Fish were held in a spring-fed flow-
through tank for two days before being tagged. Despite 
excluding a few large individuals from the study, all 
healthy-looking fish were included in the study. Fish were 
anaesthetized in clove oil (Aroma Labs, Kalamazoo, MI, 
USA; approximately 0.2 ml clove oil / l water) and ran-
domly assigned to the two tagging techniques: incision 
with scalpel or injection with the injector gun (MK25TM 
Implant Gun, Biomark), or to an untagged control group. 
Treatment fish were tagged with a Passive integrated 
transponder (PIT-tag; Biomark; 12 mm * 2.1 mm; 0.10 
g). The scalpel technique involved an incision of 2-4 mm 
on the ventral side of the fish, offset slightly from the cen-
tre and anterior to the pelvic fins (Bolland et al., 2009; 
Nyqvist et al., 2022). The tag was pushed forward in the 
abdominal cavity to align with the fish’s body. For the gun 
injectors, the needle was inserted at a 45° angle in the 
same position as the incision, followed by a full insertion 
of the tag, almost parallel to the fish body, into the ab-
dominal cavity. Following the tagging procedure, fish 
were measured for fork length and weight and left to re-
cover in aerated tanks. Controls received the same anaes-
thetic treatment but were only measured and weighed. 
Following the tagging procedure, fish were held in a 
spring-fed flow-through tank (length*width*depth = 1.1 
m * 1.2 m * 0.4 m) under a natural light regime and a sta-
ble temperature of 13°C. The rearing tank was equipped 
with artificial shelters comprised of perforated bricks. 
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Fish were fed with commercial pellets (Sera Koi Royal 
pellets®) and wild-caught macrozoobenthos. The tank was 
inspected for mortalities daily, and missing tags were 
checked at the end of the experiment on day 35. Due to 
time constraints and marginally lower survival observed 
in gun-tagged fish, effects on swimming performances 
were evaluated only on control fish (n=21) and fish tagged 
with the scalpel incision technique (n=22). On the 22nd-
23rd days after tagging, fish were subject to a swimming 
performance test in a recirculating open channel flume. 
The test arena within the flume had a cross-section of 30 
cm by 30 cm and a length of 60 cm. A honeycomb dia-
mond structured flow straightener installed at the up-
stream end of the flume made the flow uniform in the test 
section. A downstream grid placed 60 cm from the up-
stream limited the downstream end of the test arena. The 
flume side and bottom walls were made of transparent 
plexiglass material, allowing us to record the fish swim-
ming in the flume during experiments. Water depth and 
temperature were monitored using a depth and a temper-
ature sensor installed on the flume, and a flow meter sen-
sor (AquaTrans AT600, Baker Hughes, Houston TX, 
USA) attached to one of the pipes in the system was used 
to monitor the flow rate. The temperature was maintained 
at 12.1°C (SD=0.5°C) - using a TECO TK-2000 chiller. 
All sensors (depth, temperature, and flow meter) con-
nected to a data acquisition device were controlled and 
operated through a LabVIEW program. Experiments were 
recorded using a camera (Sony 4K, FDR-AX43, 50 fps) 
positioned underneath the flume. Fish position (centroid) 
was subsequently tracked using an animal tracking system 
Trex (https://trex.run, accessed on 10 November 2022) 
(Walter and Couzin, 2021).  Individual fish were netted 
from the holding tank and gently released into the exper-
imental flume section. The testing protocol included 5 min 
of habituation to the new environment with a weak current 
of 0.19 m* s-1 (SD=0.11 m* s-1). After habituation, the 
swimming performance test started with an initial flow 
velocity of 0.45 m*s-1 (SD=0.02 m* s-1). If the fish did not 
fatigue within 10 min, the flow velocity was increased to 
0.53 m*s-1 (SD=0.05 cm* s-1). When the fish rested on the 
downstream grid, it was gently poked from the down-
stream side of the grid; a fish was considered fatigued 
when resting on the downstream grid and not reacting to 
poking stimuli (Videler and Wardle, 1991). The time to 
fatigue defined the prolonged swimming performance. 
During the experiment, fish displayed steady swimming 
as well as burst and coast behaviour (Peake and Farrell, 
2006; Tudorache et al., 2007), typically including bursts 
across the full flume length. The fish position tracked with 
Trex was used to calculate the maximum swimming speed 
when crossing the full flume length; in order to determine 
the highest crossing velocity, only the fastest crossing 
recorded for each individual fish was used in the subse-

quent comparison. Data management, plotting, and statis-
tical tests were performed in Excel (Microsoft Corpora-
tion, 2018; and SPSS, IBM Corp., Released 2017., IBM 
SPSS Statistics for Windows, Version 25.0. Armonk, NY, 
USA). Nonparametric tests, Kruskall-Wallis, and Mann-
Whitney tests were used to compare tagged and control 
fish fork length, weight, time-to-fatigue, and maximum 
swimming speed. The statistical differences related to 
mortality and tag retention between treatments were tested 
using Fisher’s exact test. The swimming speed of the fish 
was normalized to its length (body length/second) since 
maximum swimming speed varies with body size 
(Domenici and Blake, 1997). The study was performed in 
agreement with the Ufficio Tecnico Faunistico e Ittiofauna 
(Wildlife and Ichthyofauna Office) of the Province of 
Alessandria (n. 65493 of 11 November 2021), pursuant to 
art. 2 of the National Decree n.26/2014 (implementation 
of Dir. 2010/63/EU). 

 
 

RESULTS 

Survival and tag retention 

Fish were anaesthetized for an average of 184 seconds 
(SD=59 s). Average handling time was 56 s (SD=16 s) for 
scalpel treatment, 46 s (SD=13 s) for injection gun treat-
ment, and 25 s (SD=9 s) for control fish, significantly 
lower for gun-tagged compared to scalpel-tagged fish 
(Mann-Whitney, p<0.05). 

There was no difference in length or weight between 
treatments (Kruskal–Wallis, df = 2, p>0.05). The range of 
tag-to-fish weight ratio was 0.4-3.7%, while the tag-to-fish 
length ratio ranged between 8.6 and 20.0%. Survival was 
high in all groups. One control and three gun-tagged fish 
died, while all scalpel-tagged fish survived during the study 
period (Tab. 1). Tag retention was high for both tagging 
techniques; two PIT tags were lost among gun-tagged fish, 
while no tag was lost among the fish subjected to scalpel 
incision. No statistically significant differences were ob-
served for mortality and PIT retention between treatments 
(Fisher exact test, p>0.05). By the end of the study, some 
but not all tagged fish displayed visible scars.  

 
Swimming performance: time-to-fatigue 

For the swimming performance test, a subset of 22 fish 
tagged with scalpel (median length = 73 mm, IQR = 71 -
79 mm; median weight = 5.5 g, IQR = 4.9-6.5 g) and 21 
control fish (median length = 75 mm, IQR = 74 -78 mm; 
median weight = 5.7 g, IQR = 5.4-6.3 g) were used. There 
was no significant difference in length (Mann-Whitney, 
p=0.15) or weight (Mann-Whitney, p=0.39) between 
tagged and control fish. Two control fish refused to swim 
and were removed from the analysis. Time-to-fatigue was 
lower for scalpel-PIT tagged fish compared to control fish 
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(Mann-Whitney, p=0.02). Median time-to-fatigue was 360 
s (IQR = 167-672 s) for control fish and 176 s (IQR = 94-
330 s; Fig. 1) for the scalpel-PIT tagged fish. 

Swimming performance: maximum swimming speed 

All but six fish traversed the flume at least once. The 
median maximum swimming speed during the traversal 
was 12.0 body length (BL)*s-1 (IQR = 10.2-13.0 BL* s-1) 
for control fish (n=17) and 10.8 BL*s-1 (IQR = 9.7-13.1 
BL* s-1; Fig. 2) for the scalpel-PIT tagged fish (n=18). 
There was no difference in maximum swimming speed be-
tween tagged and control fish (Mann-Whitney, p=1.0; Fig. 
2). The maximum speed reached by a scalpel-PIT tagged 
individual was 15.9 BL* s-1, while the maximum swim-
ming velocity recorded for untagged fish was 15.3 BL*s-1. 

DISCUSSION 

Italian riffle dace tagged with 12 mm PIT tags dis-
played high survival and tag retention rates. There was no 
significant difference between implantation methods, but 
implantation by incision showed no mortality or tag loss; 

a few fish tagged with the injection gun lost their tag or 
died. PIT tagged fish showed a lower prolonged swim-
ming performance compared to the control, while no dif-
ference was detected in maximum swimming speeds.  

The tag-to-fish length ratio ranged from 8.6 to 20.0% 
(mean=15.3%) and was higher than 17.5%, a threshold 
recommended for salmonids based on survival and 
growth effects (Vollset et al., 2020), in 6.9% of tagged 
fish. The tag-to-fish weight ratio ranged from 0.4 to 3.7 
% (mean=1.8%), also, in this case, placing it slightly 
above the often-cited threshold of 2% (Winter, 1983) for 
36.2% of tagged fish. In both instances, none of the fish 
that exceeded the thresholds died or lost their tag during 
the study period, supporting claims of certain flexibility 
regarding these thresholds (Brown et al., 1999). 

Although generally low and not statistically different, 
we did observe some mortality and tag loss among the 
gun-tagged fish but not among the fish tagged with the 
scalpel incision. The deaths were recorded in the days im-
mediately following the tagging procedure and perhaps 
related to damage to internal organs compatible with the 
over-insertion of the gun’s needle (Archdeacon et al., 
2009). This slightly lower survival rate obtained with the 

Tab. 1. Biometric measures, survival and PIT tag retention, of Italian riffle dace (Telestes muticellus) in subsequent stages of rearing day.  

Control                                 Gun                                 Scalpel 

Fork length, median, IQR (mm), n 79, 74-85 (58) 78, 73-82 (58)     77, 72-81 (58) 
Body weight, median, IQR (g), n 5.8, 4.8-7.8 (58) 5.6, 4.7-6.7 (58)                 5.6, 4.5-6.7 (58) 
Survival, % (n)
  Day 0 100.0 (58) 100.0 (58) 100.0 (58) 
  Day 7 98.3 (57) 94.8 (55) 100.0 (58) 
  Day 35 98.3 (57) 94.8 (55) 100.0 (58) 
Retention, % (n)
Day 35 n.a. 96.6 (56) 100.0 (58) 
n.a., not applicable.

Fig. 1. Box plots of time-to-fatigue (s) during swimming 
performance tests. Control fish (n=19) and scalpel-PIT tagged 
fish (n=22).

Fig. 2. Box plots of maximum swimming speed (BL/s) 
measured during a complete flume crossing. Control fish (n=17) 
and scalpel-PIT tagged fish (n=18). 
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gun injector was likely attributable to the small size of the 
fish tested. A study on Oreochromis niloticus (Cichlidae) 
showed higher survival rates of fish tagged with injectors 
proportionally to fish size (Baras et al., 1999). Moreover, 
the requirement of a larger hole entrance into the fish body 
wall for the insertion of the gun’s needle may have led to 
a higher expulsion rate of the PIT tags, resulting in a lower 
PIT retention rate; two PIT tags were lost among fish 
tagged with the injector gun while no tag was lost with 
scalpel incision. 

The PIT tagged fish showed a substantially lower pro-
longed swimming performance compared to the control 
fish, constituting a warning that tagging is not without 
cost for the tagged fish. Previous studies on salmonids 
(Newby et al., 2007) and non-salmonid species (Ficke et 
al., 2012; Clark, 2016; Swarr et al., 2022) did not detect 
any tagging effects on prolonged swimming performance. 
No difference between tagged and control fish was also 
observed among species of the Leuciscidae family, al-
though in fish with a relatively large size range and asso-
ciated increased variance in swimming performance 
(Ficke et al., 2012). The partially different results of our 
study might be due to interspecific differences (Brown et 
al., 2006), perhaps in combination with study-specific ef-
fects (e.g., sample size, variability, test design). It is pos-
sible that longer recuperation after tagging would reduce 
or even erase the difference between tagged and untagged 
fish (Adams et al., 1998; Georgopoulou et al., 2022). We 
studied the swimming performance 22-23 days after tag-
ging, allowing a relatively short time for the fish to re-
cover. Finally, the effect is likely smaller in larger fish or 
at lower tag-to-fish ratios, as found in radio-tagged Pacific 
salmon (Adams et al., 1998). Future studies will need to 
study the potential attenuation of tagging effects on pro-
longed swimming capacity over time and under a wider 
range of tag-to-fish ratios.   

It is generally acknowledged that swimming per-
formance represents an important ecological trait, influ-
encing a wide range of behaviours (Tudorache et al., 
2008; Downie et al., 2020). In the laboratory, it is often 
tested using increasing or fixed velocity tests within pro-
longed swimming speeds, integrating aerobic and anaer-
obic swimming as well as physiology and behaviour 
(Hammer, 1995; Katopodis and Gervais, 2012; Tudo-
rache et al., 2013). Under in situ conditions, however, 
burst swimming speeds during shorter time intervals 
might be as, if not more important, directly influencing 
survival (Wardle, 1975), predator-prey interaction 
(Domenici, 2010), and passage of high-velocity barriers 
(Starrs et al., 2011; Katopodis and Gervais, 2012). To 
evaluate tag effects on burst swimming performance, we 
tracked the highest swimming speed by which the fish 
traversed the flume. Although these values do not rep-
resent the maximum speeds achievable by each fish, 

they constitute a good basis to compare a semi-volitional 
performance between the treatments. We did not find 
any significant difference in maximum swimming ve-
locities between tagged and untagged fish. The maxi-
mum swimming speeds found are in agreement with 
swimming capacities reported for Leuciscidae species in 
North America (Leavy and Bonner, 2009). No difference 
in maximum swimming speed between PIT tagged fish 
and control fish also corroborates the result from escape 
response-based swimming tests in spined loaches 
(Nyqvist et al., 2022), bullheads  (Knaepkens et al., 
2007) and lampreys (Mueller et al., 2006). 

Although not the main objective, this study also con-
stitutes the first published estimate of maximum and pro-
longed swimming performance in Telestes muticellus. 
From an applied perspective, these traits are important for 
predicting the fish’s capability to overcome high flow ve-
locity barriers in fishways and hence for fish passage de-
sign (Katopodis and Gervais, 2012).  Although the need 
for fish passage has been acknowledged for hundreds of 
years (Montgomery, 2004), the functionality of fishway 
is still highly variable and especially challenging for 
small-sized fish (Bunt et al., 2012; Noonan et al., 2012; 
Marsden and Stuart, 2019). Given the high number of 
river barriers to movement, improved fish passage effi-
ciency is significant for future riverine fish conservation 
(Silva et al., 2018; Belletti et al., 2020). Our results invite 
further inquiry into the swimming performance of Telestes 
muticellus and other small-sized fish species.  

CONCLUSIONS 

Italian riffle dace tagged with 12 mm PIT tags dis-
played high survival and tag retention rates. The en-
durance under prolonged swimming was significantly 
lower for PIT tagged fish compared to the control; the 
maximum swimming speeds achieved by the PIT tagged 
fish equalled those of the control fish. This leads us to 
conclude that Italian riffle dace above 60 mm can be 
tagged with 12 mm PIT-tags but not without costs for 
tagged fish and with the potential to introduce biases in 
the studied system. Although it is likely that for relatively 
stationary small stream fish, the maximum swimming 
speed achieved is at least of the same, if not higher, im-
portance as the capability of steady swimming for several 
minutes (Domenici, 2010; Starrs et al. 2011). It is also 
likely that the tagging effect on prolonged swimming per-
formance will decline with time (Adams et al., 1998; 
Georgopoulou et al., 2022). The importance of potential 
reduced prolonged swimming capacity on the study re-
sults needs to be weighted on a study-by-study basis. Fu-
ture work should explore potential tagging effects over 
longer periods of time, with a particular emphasis on the 
behaviour in the natural environment.  
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