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INTRODUCTION

One of the main goals of modern biology is to identify
and differentiate species in different groups of organisms.
Cladocera (Crustacea: Branchiopoda) is a well-known su-
perorder of freshwater animals present in all continents, in-
cluding Antarctica, with well-known differences in
identification and discrimination of species (Forró et al.,
2008). Chydoridae Dybowski & Grochowski, 1894 emend.
Frey, 1967, is the largest family of order Anomopoda Sars,
1865 and Cladocera in toto. The former contains more than
half of all described species of Cladocera. Chydorids have
attracted the attention of hydrobiologists since the pioneer-
ing publications on Cladocera (Müller, 1776, 1785).

Chydorids were the primary organisms of Frey’s (1985,
1987) studies which led to the well-known and widely ac-
cepted conclusion that cladoceran species display a non-
cosmopolitanism in their distribution. Subsequently,
continental endemism and regionalism were found to be
common patterns for other cladoceran families (Smirnov,
1976; Haney and Taylor, 2003; Adamowicz et al., 2004;
Korovchinsky, 2004; Bekker et al., 2012) and orders (Ko-
rovchinsky, 2004; Xu et al., 2009; Millette et al., 2011).

In the past two decades, hydrobiologists have examined
chydorids more critically, taking into consideration mor-
phological characters such as head pores, mandibular ar-
ticulation, trunk limb setation and by comparing
populations from different continents with those from type

localities (Frey, 1993; Kotov, 2009; Van Damme et al.,
2011; Sinev and Kotov, 2012; Van Damme and Sinev,
2013). These observations have resulted in a significant in-
crease in the number of known species from different con-
tinents. The first publications on phylogenetics (Sacherová
and Hebert, 2003) and barcoding (Elias-Gutierrez et al.,
2008; Jeffery et al., 2011) of chydorids have appeared re-
cently, although most recent geneticists work with a single
genus Daphnia Müller, 1785.

Among chydorids, there are many well-recognised,
small and relatively well-studied genera, and several large
genera with a confused taxonomy, such as Alona Baird,
1843 (subfamily Aloninae), Pleuroxus Baird, 1843 or
Alonella Sars, 1862 (subfamily Chydorinae) (Smirnov
1971, 1996). Probably the most common chydorid genus,
which is present in a majority of tropical, temperate and
even polar water bodies, is Chydorus Leach, 1816 (sub-
family Chydorinae). Species of this genus are more fre-
quently recorded in hydrobiological publications as
compared with other chydorids, because the former usu-
ally occur in plankton – the primary object of hydrobio-
logical studies. Smirnov (1996) listed 30 valid species in
the world fauna, but this number was significantly under-
estimated, and some new species were subsequently
added, i.e., by Smirnov and Sheveleva (2010). The genus
contains several taxa now regarded as cosmopolitan or
tropicopolitan, which seem to be complexes of congener
species with a relatively wide or very narrow distribution
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(Frey, 1987; Smirnov, 1996; Belyaeva and Taylor, 2009).
Four species of Chydorus have been recorded from

Australia by Smirnov and Timms (1983). Two other taxa,
C. barroisi (Richard, 1894) and C. hybridus Daday
(1905), were transferred to Ephemeroporus Frey (1982).
When Smirnov & Timms submitted their publication, they
did not know about Frey’s paper (1982). Most recently,
Shiel and Dickson (1995) and Smirnov (1995) list 11
valid Australian species: C. eurynotus Sars, 1901; C. cle-
landi Henry, 1919; C. herrmanni Brehm, 1933; C. kallip-
igos Brehm, 1933; C. obscurirostris Frey, 1987; C. opacus
Frey, 1987; C. ovalis Kurz, 1874; C. parvus Daday, 1898;
C. pubescens Sars, 1901; C. reticulatus Daday, 1898; C.
sphaericus (Müller, 1785). Some of these taxa definitively
form groups of congener species and need to be revised
worldwide (Smirnov, 1996).

Chydorus sphaericus-like populations are common in
Australia (Smirnov and Timms, 1983). Smirnov (1971) and
Frey (1980, 1985, 1987) studied Chydorus sphaericus s.lat.
in detail. This taxon was regarded as cosmopolitan for a
long time, although similar forms were described from dif-
ferent continents, sometimes based on very dubious diag-
nostic characters. For example, a special name has been
suggested for Australian sphaericus-like populations, C.
leonardi King, 1853, but any differences between this and
C. sphaericus s.str. are unknown. Frey (1980), Shiel and
Dickson (1995) and Smirnov (1995) concluded that C.
sphaericus in Australia is a species complex, none of which
is actually C. sphaericus s.str. - the latter is present in Eura-
sia only. Smirnov (1996) found some populations in Aus-
tralia that were undistinguishable from European
populations and concluded that the distribution of this taxon
is Holarctic and probably worldwide. Belyaeva and Taylor
(2009) genetically analysed the Holarctic populations and
recognised at least six well-differentiated clades in the C.
sphaericus group, some of them locally distributed. Later
Jeffery et al. (2011) found even more taxa from this com-
plex in Arctic Canada.

The objective of the present study was to consider all
available data, morphological and molecular (ribosomal
and nuclear genes), of the C. sphaericus to clarify the tax-
onomical position of Australian C. sphaericus.

METHODS

Studied water bodies

South Para reservoir (completed in 1958) is situated
approximately 60 km north of Adelaide (Fig. 1). It has a
surface area of 4 km2, and a storage capacity of approxi-
mately 45,330 ML with a maximum depth of 42 m at full
supply level. South Para reservoir receives water from its
catchment, which covers an area of 326 km2 and occa-
sionally supplemented from River Murray through the
Mannum pipeline.

Myponga reservoir (completed in 1962) is situated ap-
proximately 70 km south of Adelaide. It has a surface area
of 2.8 km2, and a storage capacity of approximately
26,800 ML with a maximum depth of 42 m at full supply
level (Brookes et al., 2005). It receives water solely from
its catchment, which covers an area of 124 km2. It is in-
tensively managed using artificial aeration and destratifi-
cation from two surface mechanical mixers and
multi-diffuser bubble-plume aerators to control cyanobac-
terial growth (Lewis et al., 2001).

Zooplankton sampling

In February 2010, abundant ovigerous females of C.
sphaericus were collected in two reservoirs, using a con-
ical plankton net with a mesh size of 35 µm. The plank-
ton net was towed behind a boat for 5-7 min at a speed
of about 2 m s–1 in mid open water (Suthers and Rissik,
2009). Specimens were fixed and preserved in the field
with denatured ethanol to obtain a final concentration of
alcohol of 70%, and then stored in 200 mL Cospak PET
bottles.

Morphological identification

Specimens were selected from preserved samples
under a binocular stereoscopic microscope, and studied
under an optical microscope in a drop of glycerol. Ten
parthenogenetic females from each locality were dis-
sected under a stereoscopic microscope for the study of
appendages and postabdomen, under a high-power
Olympus BX51 microscope, to check the identity of
Australian populations of C. sphaericus, with those from
Europe (Frey, 1980, 1985; Alonso, 1996; Belyaeva and
Taylor, 2009). Digital photographs were taken using
Olympus BX51 microscope under high resolution using
the polarizing photography, and composite line drawings
were made from these photographs for different parts of
the specimens. The inbuilt imaging software Image J®

was used for measurements.

Molecular methods

Ten specimens of ovigerous females of C. sphaericus
were selected from material collected from each reser-
voir, to examine their genetic variability. Total genomic
DNA was extracted for each specimen using QIAMP®

DNA extraction kits as described in the manufacturer’s
protocol. Polymerase chain reaction (PCR) was used to
amplify an approximately 680 bp fragment of the COI
gene with Folmer primer pair (LCO 1490 and HCO
2198) (Folmer et al., 1994). Each 50 µL PCR reaction
consisted of 5 µL of genomic DNA template, 3 µL of 50
mM MgCl2, 5 µL of 10X Buffer, 1.5 µL of each primer,
1 µL of 10 µM dNTP’s, 0.24 µL of Taq platinum poly-
merase and 32.76 µL of DNA free Milli-Q water. PCR
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profile consisted of an initial hot start (2 min 30 sec at
94°C) for 1 min followed by: 5 cycles each of 94°C for
35 s, 48°C for 40 s and 72°C for 1 min; followed by 35
cycles each of 94°C for 30 s, 56°C for 40 s and 72°C for
1 min, finishing with a step of 72°C for 10 min. PCR
products were run in 2% agarose gels containing 10 µL
of SYBR® Safe DNA gel stain (Invitrogen Inc., Carlsbad,
CA, USA) for 2 to 4 h at 80 to 100 V and visualized
using UV-transillumination. The amplified bands were
sharp and clean, which were cut and purified from the
agarose gel using QIAquick® Gel Extraction Kit.

The sequencing reaction for both forward and re-
verse directions involved: 0.5 µL of primer, 1 µL of Big
Dye Terminator v 3.1, 3.5 µL of sequencing buffer and
1 to 3 µL of purified PCR product. Concentration of
PCR product was as follows: 1 µL of the purified PCR
product for strong band with DNA concentration >8 ng
µL–1, 2 µL for moderate band with DNA concentration

between 3 to 5 ng µL–1 and 3 µL for weak band with
DNA concentration <3 ng µL–1, with the total volume
made up to 25 µL using DNA free Milli-Q water. Se-
quencing thermal cycle consisted of 1 cycle of 1 min at
95°C, followed by 25 cycles of 95°C for 15 s, 50°C for
10 s and 60°C for 4 min with final overnight incubation
at 25°C. Sequencing product was then purified using
MilliporeTM384 - SEQ Filter plates using 1X Tris
Buffer. The purified PCR products along with primers
(LCO1490 and HCO2198) were sent to the Australian
Genome Research Facility Ltd., Australia and Macrogen
Inc., South Korea, for sequencing on the AB 3730xl
Platform sequencer. Both forward and reverse genomic
strands were sequenced to confirm the accuracy of each
haplotype sequence. DNA sequences were edited using
Bioedit (ver. 7.0.0) and aligned using Clustal W
(Thompson et al., 1994), using Gap open penalty set to
100, so that gaps became less frequent. Estimates of se-

Fig. 1. South Para and Myponga reservoirs with sampling sites. Legends: filled circles and stars represents permanent pelagic sampling
sites. Image taken from Google maps on the 4th April 2011.
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quence divergence were calculated for COI gene using
the Kimura 2-parameter (K2P) distance model (Kimura,
1980) and a simplified tree was constructed using the
Mega 5 software (Tamura et al., 2011). Branch support
values were estimated using 1000 bootstrap replicates.
All other parameters were set to their default values.

GenBank dataset

To provide a comprehensive sister-taxon coverage and
survey of intraspecific variation, our data were comple-
mented by sequences on Chydorus sphaericus-group from
GenBank and Barcode of Life Data Systems websites,
with the total number of sequences=139, number of hap-
lotypes=79, as available on 20 October 2012.

GenBank sequence ID names were formatted with
accession numbers provided from GenBank for down-
loaded sequences. Haplotypes were identified using Col-
lapse 1.2 (Posada and Buckley, 2004). Barcode
sequences generated from this study and those extracted
from GenBank were aligned using Clustal W application
implemented in software Bioedit Ver.7.0.0. (Hall, 1999)
using Gap open penalty set to 100, so that gaps become
less frequent.

Phylogenetic analysis

The best fit models of nucleotide substitution were se-
lected using the Model Generator (Keane et al., 2006) and
the Maximum Likelihood (ML) tree was constructed using
PhyML ver. 3.0 (Guindon and Gascuel, 2003). Following
parameter settings were used for phylogenetic analysis:
input sequences in interleaved format; best model of the
nucleotide substitution was selected from Model Generator;
transition/transversion ratio and proportion of invariable
nucleotide sites estimated by PhyML; a BIONJ tree was
initially used; tree topology search option was set to Best
of Nearest Neighbour Interchange (NNI) and Subtree Prun-
ing and Regrafting (SPR) with random starting tree set
at 5; non-parametric bootstrap analysis was set to YES with
1000 replicates. Within and among clade, distances were
calculated and NJ phylogenetic analyses were carried out
in MEGA 5.0 using model and gamma rates distribution
with the shape parameter estimated by JModelTest and with
pairwise deletion of gaps.

Bayesian analyses were performed by using Mr. Bayes
v. 3.0 (Huelsenbeck et al., 2001). Number of substitution
types was set to 6 and the rates were set to gamma with a
proportion of invariable sites. All priors were left to de-
fault to allow estimation of parameters from data. Four
independent Markov Chain Monte Carlo analyses were
run simultaneously for 2 million generations and sampled
every 500 generations. The first 25% generations were
discarded as the burn-in and a 50% majority rule consen-
sus tree was calculated from remaining trees.

RESULTS

Morphological diagnosis of the C. sphaericus
species complex

Chydorus specimens from two South Australian reser-
voirs (Fig. 2) clearly belongs to C. sphaericus group, which
is characterized by the following parthenogenetic female
characters: i) sub-globular body; ii) pointed rostrum; iii) tri-
angular labral keel with a sharply pointed tip; iv) a small
flap on inner face of valve near its anterior margin; v) no
denticles in postero-ventral portion of valve; vi) postab-
domen relatively narrow, with well-expressed preanal angle;
vii) teeth on postanal margin of postabdomen small; viii)
antenna I with aesthetascs only in terminal position, and
with a sensory seta in its middle; ix) antenna II with setae:
0-0-3/0-1-3; x) inner distal lobe of limb I with a small seta
and two large setae of which one is additionally chitinised.
Unfortunately, morphological characters of parthenogenetic
females alone are insufficient to determine exact species
within the sphaericus-group (Belyaeva and Taylor, 2009).

Mitochondrial gene tree

A 510 bp fragment of the COI gene was successfully
amplified for Chydorus sp. (number of haplotypes=2). The
intraspecific divergence was 0% (raw and ML-corrected
divergences), whereas interspecific variation was 3% (raw
and ML-corrected divergences) when compared with C.
sphaericus from Germany (EU719127.1 and EU719129.1)
(Fig. 3). The Australian haplotypes belong to Chydorus
sphaericus s.str. and are definitively grouped with a small
sub-clade Clade A of Belyaeva and Taylor (2009), contain-
ing haplotypes from Iceland and Greenland.

DISCUSSION AND CONCLUSIONS

Chydorus sphaericus from South Australia shows a
close genetic similarity with C. sphaericus from Europe,
and the former is especially close to populations from Ice-
land and Greenland. Genetic similarity between South
Australian and Holarctic haplotypes indicates the former
are not continental endemics and their transfer from the
original distributional range to Australia was very recent.
Such cases are mainly explained by human activity.

The expansion of geographical distribution of species
via anthropogenic factors is common and has been re-
ported previously for many planktonic crustaceans such
as copepods (Gutierrez-Aguirre and Suárez-Morales,
2000; Suárez-Morales et al., 2005; Duggan et al., 2006;
Briski et al., 2011b; Sukhikh et al., 2013). Cladocerans
are among the most famous invaders of water bodies due
to their destructive effect on native ecosystems. For ex-
ample, invasive predatory onychopods have significantly
reduced zooplankton species richness in the Great Lakes
of North America (Yan et al., 2002), Baltic Sea
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Fig. 2. Parthenogenetic female of Chydorus sphaericus from Myponga reservoir: A) General view; B) Head; C) Anterior portion of
valve, inner view; D) Postero-ventral portion of valve, inner view; E-F) Postabdomen, lateral view; G) Antenna II; H) Limb I. Scale
bars: 0.1 mm. Numbers correspond to diagnostic characters of C. sphaericus group listed in the text.
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(Gorokhova et al., 2000), and in a large artificial reservoir
on the Volga River, Russia (Panov et al., 2007).

The most famous cladoceran invaders are species of
Daphnia. Different directions of invasions are revealed. Eu-
ropean Daphnia pulex has been transferred in ballast tanks
of transoceanic ships to North American Great Lakes
(Briski et al., 2011). In contrast, a massive stock of Mi-
cropterus salmoides (largemouth bass) from USA to East
Africa was accompanied by the appearance of an American
asexual pulex-like lineage, which now has successively re-
placed native species of Daphnia in many African water
bodies (Mergeay et al., 2005), except for on high moun-
tains, where some native endemic species survived (Kotov
and Taylor, 2010).

Perhaps the most successive invader is D. lumholtzi
Sars, 1885, which was introduced together with African
blue tilapia or/and nile perch to southern USA (Sorensen
and Sterner, 1992), and which has now colonized all of the
USA (Benson et al., 2013), Mexico (Elias-Gutierrez et al.,
2008), Brazil (Zanata et al., 2003) and Argentina (Kotov
and Taylor, 2014).

Several exotic species of Daphnia have already appeared
in Australia: the Palaearctic D. obtusa Kurz, 1874 (Benzie
and Hodges, 1996), D. dentifera Forbes, 1893 (Duggan et
al., 2006) from North America and East Asia and aforemen-
tioned North American asexual D. pulex lineage (Duggan et
al., 2012). The latter authors speculated that the appearance
of D. pulex in New Zealand was related to mass stocking to
this country of several species of fishes (brown trout, rain-
bow trout and land-locked salmon) from North America.

In the 19th-20th century Australia was a target for mass
stocking of several introduced species of fishes from Eu-
rope, mainly brown trout, Atlantic salmon, European
carp, European perch from the United Kingdom
(Fletcher, 1986; Morgan et al., 2004). Each of these fish
species has been introduced several times to different
parts of the continent, and then Australian populations
have often been used for artificial dispersion across Aus-
tralia. Among non-native fishes, European carp (Cypri-
nus carpio) has the strongest impact on native
ecosystems (Koehn et al., 2000). Several genetic strains
of European carp from different regions of Europe (Eng-
land and Prussia) and later European carp from tropical
Asia were introduced (Koehn et al., 2000). We do not
have enough data to associate the appearance of Chy-
dorus sphaericus in Australia with a certain campaign to
stock European fish, but it is highly likely that in the
course of such introductions, the ephippia from northern
Europe were occasionally brought to Australia.

CONCLUSIONS

At present, we cannot say that our assumption for the
two populations from South Australia of European C.
sphaericus s.str. can be applied to the whole of Australia.
It is possible that other populations of Chydorus in Aus-

tralian water bodies might belong to other taxa, or could
even be endemic to Australia. But there is also a chance
that in the course of numerous transportations and simul-
taneous introduction of fishes within Australia, this con-
tinent was widely infected by C. sphaericus. To confirm
whether C. sphaericus is an invasive species due to
human-mediated introductions, or whether it is a native
Australian taxon, further extensive molecular studies (in-
volving nuclear genes) and detailed morphological com-
parisons are needed. This is a first report on the invasion
of a non-daphniid species of Cladocera in Australia.

The use of molecular methods in studies of invasive
species has added a new dimension to the traditional mor-
phological approach. The former allows us to understand
some valuable traits of the invasive process, such as an
exact geographic region of origin of an invasive species.
Use of genetic tools, such as DNA barcoding, could be
important for the identification of organisms, in addition
to traditional morphological descriptors (Costa et al.,
2007; Ferri et al., 2009). The success in using sequences
from COI gene region to distinguish phylogroups
(species, intra-specific groups and haplotypes) and to re-
veal hidden species diversity in the Cladocera (Elías-
Gutiérrez et al., 2008; Belyaeva and Taylor, 2009) has
been remarkable. But this method, however, is only effec-
tive for those species which have been studied extensively
in the past, with well-documented morphology, reproduc-
tion, ecology and geographical distribution (Sites and
Marshall, 2004). Nevertheless, combining morphology
and molecular data has been found to be more successful
for species recognition, identification and refinement
(Ferri et al., 2009).

Some invaders are very destructive for ecosystems
like D. lumholtzi in the Americas (Sorensen and Sterner,
1992) or carp in Australia (Koehn et al., 2000). At this
moment we do not have any ideas on significance of the
introduction of Chydorus sphaericus for Australian
ecosystems, this question requires special studies.
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Fig. 3. Maximum likelihood analysis of COI gene for the Chydorus sphaericus complex. Numbers above branches are Maximum like-
lihood (100 replicates) and underlined numbers are from Bayesian analysis. Asterisk represents sequences from the current study.
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