Radiometric dating of sediment records in European mountain lakes

Peter G. APPLEBY*

Department of Mathematical Sciences, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK *e-mail corresponding author: appleby@liverpool.ac.uk

ABSTRACT

Sediment cores from seven European mountain lakes collected as part of a study of palaeolimnogical records of climate change (the MOLAR project) were dated radiometrically by ²¹⁰Pb. In spite of the remote locations, only one site recorded more or less uniform sediment accumulation throughout the past 150 years. At three further sites the ²¹⁰Pb record indicated uniform sedimentation up until ca 1950 but significant increases since then. Stratigraphic dates based on records of fallout ¹³⁷Cs and ²⁴¹Am showed that ²¹⁰Pb supply rates to these core sites had nonetheless remained relatively constant and that the sediments could be dated by the CRS model. At the remaining sites there were indications of episodic changes in both sedimentation rates and ²¹⁰Pb supply rates. Since the changes were not in proportion, neither of the simple dating models (CRS or CIC) was applicable. Using the ¹³⁷Cs and ²⁴¹Am stratigraphic dates as reference points it was however possible to construct a realistic chronology for these cores by applying the CRS model piecewise to each time-bounded section.

Key words: sediment records, mountain lakes, ²¹⁰Pb dating, artificial radionuclides

1. INTRODUCTION

One of the main aims of the recent European MOLAR project (Battarbee et al. 2000) was to assess the relationship between direct instrumental records of climate change and natural environmental records stored in remote mountain and arctic lake sediment sequences. Such lakes are thought to be particularly sensitive to climate change, and their sediments are expected to contain a range of physical, chemical and biological records of the response of the ecosystem to these changes. At each study site, climate records for the period 1781 to 1997 have been reconstructed using long term meteorological data from lowland observatories and models of the relationship between low and high altitude stations (Agusti-Panareda & Thompson 2000). In order to investigate the relationship between climate records and sediment records, it was essential to determine a reliable chronology for sediments spanning this period.

The principal method for dating the MOLAR sites was ²¹⁰Pb supported by chronostratigraphic dates based on records of the artificial radionuclides ¹³⁷Cs and ²⁴¹Am. Following the introduction of the technique by Goldberg (1963) and Krishnaswami *et al.* (1971), ²¹⁰Pb has become established as one of the standard tools for dating lake sediments spanning the past 100-150 years. The method is unequivocal at sites where sediment accumulation rates have remained relatively uniform throughout this period. At such sites concentrations of the unsupported (atmospherically supplied) component of total ²¹⁰Pb activity decline exponentially with depth at a rate that is inversely proportional to the sedimenta-tion rate. However, at sites impacted by natural and/or

anthropogenic environmental change, sedimentation rates may well have varied in recent times, causing significant deviations of the ²¹⁰Pb unsupported concentration versus depth profile from a simple exponential relationship. Different models have been developed to account for such deviations (Appleby & Oldfield 1978; Robbins 1978) and the accuracy of ²¹⁰Pb dates in a particular application will depend on the validity of the model used. This is usually done by reference to independent records of artificial fallout radionuclides such as ¹³⁷Cs (Pennington et al. 1973) and ²⁴¹Am (Appleby et al. 1991) from the atmospheric testing of nuclear weapons, or from the 1986 Chernobyl reactor accident. A number of techniques for assessing ²¹⁰Pb data and calculating a best chronology are given in the literature (e.g. Appleby & Oldfield 1983; Oldfield & Appleby 1984; Appleby 1998). One of the key aspects of the ²¹⁰Pb dating methodology is an assessment of the dominant processes by which fallout is delivered to the core site. A potential problem in dating mountain lakes is the possible impact of seasonal effects on the uniformity of supply rates. During winter the water column is isolated from the natural atmospheric ²¹⁰Pb flux. Fallout onto the lake and its catchment during this period is locked up in snow and ice and released only at the time of the spring thaw.

The main objective of this paper is to present a detailed sediment chronology for each of the MOLAR sites that takes account of the different transport processes. Since at most sites the ²¹⁰Pb time-span was limited to no more than about 150 years, it was also important to determine a reliable means for extrapolating ²¹⁰Pb dates back to 1781, the beginning of the period of climate reconstruction.

Fig. 1. Map of the Molar sites showing the locations of Saanajärvi, Øvre Neådalsvatn, Nižné Terianske Pleso, Gossenköllsee, Hagelsee, Ledvicah and Redó.

Tab. 1	1.	The	study	sites	and	their	main	phy	ysiogi	aphic	paramete	rs
--------	----	-----	-------	-------	-----	-------	------	-----	--------	-------	----------	----

	Latitude	Longitude	Altitude	Mean Annual Rainfall	Catch area	Lake area	Max depth	Mean depth	Master (dated) core
			m a.s.l.	mm y ⁻¹	km ²	ha	m	m	
Saanajärvi	69° 05' N	20° 52' E	679	422	4.6	70	24	5.1	SJ96/4
Øvre Neådalsvatn	62° 46' N	9° E	728	1500	16	50	18	3.9	OVNE4
Nižné Terianske	49° 10' N	20° E	1941	1775	1.1	4.8	44.4	18.4	TERI7
Gossenköllesee	47° 13' N	11° 1' E	2417	1300	0.2	1.7	9.9	4.6	GKS2
Hagelsee	46° 40' N	8° 2' E	2339	1820	0.36	3	18.5	8.3	HAG96-1
Jezero v Ledvicah	46° 20' N	13° 47' E	1830	2619	~2.5	2.4	15	5.7	LEDV5
Redó	42° 39' N	0° 46' E	2240	1328	1.55	24	73	32	RCM2

2. STUDY SITES

The criteria governing the selection of the study sites were that they should be above the regional timberline, and have been subject to minimal human disturbance. At such sites there should be two main external forces driving ecological changes, climate change and atmospheric pollution. In order to distinguish the effects of these two factors the program included a wide range of sites in different environmental settings and varying degrees of exposure to pollution. Their locations, shown in Figure 1, ranged from Finnish Lapland (Saanajärvi, 69° 5' N, 20° 52' E) to the Spanish Pyrenees (Redó 42° 39' N, 0° 46' E). The main physiographic parameters of each site are given in table 1.

3. METHODS

A number of sediment cores were collected from each site using the methods detailed in Wathne *et al.* (1995). One of these, designated the master core for that site (see Tab. 1), was used for radiometric dating. Dates from the master cores were transferred to other cores using depth correlations based on loss of ignition and other sediment data (Thompson & Clark 1989).

Each master core was sectioned at intervals ranging from 0.15-0.25 cm. Sub-samples of dried sediment were sent to the University of Liverpool Environmental Radioactivity Research Centre where they were analysed for ²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs and ²⁴¹Am by direct gamma assay using Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detectors (Appleby et al. 1986). ²¹⁰Pb was determined via its gamma emissions at 46.5 keV, and ²²⁶Ra by the 295 keV and 352 keV γ-rays emitted by its daughter isotope ²¹⁴Pb following 3 weeks storage in sealed containers to allow radioactive equilibration. ¹³⁷Cs and ²⁴¹Am were measured by their emissions at 662 keV and 59.5 keV respectively. The absolute efficiencies of the detectors were determined using calibrated sources and sediment samples of known activity. Corrections were made for the effect of self-absorption of low energy γ -rays within the sample (Appleby et al. 1992).

Supported ²¹⁰Pb in each sample was assumed to be in equilibrium with the in situ ²²⁶Ra, and unsupported ²¹⁰Pb was calculated by subtracting ²²⁶Ra activity from total ²¹⁰Pb. Radiometric dates were calculated from the ²¹⁰Pb and ¹³⁷Cs records using the procedures described in Appleby (1998). Standard errors in the dates determined by uncertainties in the measured data were calculated using the methods described in Appleby (2000).

4. RESULTS

The results of the radiometric analyses are shown in figures 2-4. Detailed chronologies for each core are given in tables 2-8. These tables also include extrapolated dates (shown in italics) below the ²¹⁰Pb dating horizon back to the beginning of the climate record in 1781. The ²¹⁰Pb dating horizon is the depth at which unsupported ²¹⁰Pb activity falls below the limit of detection.

The sites can be placed in three categories, those with uniform sedimentation rates throughout the past 150 years (Fig. 2), those with increasing sedimentation rates during the past few decades (Fig. 3), and those with irregular changes over a longer period of time (Fig. 4).

4.1. Sites with uniform sedimentation rates

Only one site appears to have had uniform sedimentation throughout the past 150 years, Øvre Neådalsvatn (Norway). At this site equilibrium between total ²¹⁰Pb activity and the supporting ²²⁶Ra (corresponding to *ca*150 years accumulation) was reached at a depth of *ca* 9 cm (Fig. 2a). Supported ²¹⁰Pb (²²⁶Ra) concentrations have been virtually constant throughout this period. Unsupported ²¹⁰Pb concentrations (Fig. 2b) decline more or less exponentially with depth. In consequence, ²¹⁰Pb dates calculated using the standard simple dating models (CRS and CIC) are unequivocal. Both indicate relatively uniform sedimentation since *ca* 1860,

Fig. 2. Fallout radionuclides in Øvre Neådalsvatn core OVNE4 showing (**a**) total and supported 210 Pb, (**b**) unsupported 210 Pb, (**c**) 137 Cs and 241 Am activities *versus* depth in the core.

with a mean value of 0.0100 ± 0.0004 g cm⁻² y⁻¹. Sediment dates for this core (OVRE4) have been calculated using the mean post-1860 sedimentation rate, and the results given in table 2. Since small irregularities in the detailed sedimentation rates are probably not significant, these dates are probably more reliable than those given directly by the dating model. Differences between the two are however small (<4 years).

The ²¹⁰Pb chronology places 1963 at just over 2 cm. The absence of a peak in ¹³⁷Cs concentrations at this depth recording maximum fallout from the atmospheric testing of nuclear weapons can be attributed to high levels of ¹³⁷Cs activity in the surficial sediments from the 1986 Chernobyl accident.

P.G. Appleby

At Saanajärvi (Finland), Gossenköllesee (Austria) and Redó (Spanish Pyrenees) the unsupported ²¹⁰Pb depth profile was approximately exponential in the deeper parts of each core, suggesting uniform sedimentation in the earlier part of the record. In each case, however, there was a significant flattening of the profile in the upper sections (Figs 3(a)). Relatively well resolved ¹³⁷Cs and ²⁴¹Am peaks (Figs 3(b)) show that the surficial sediments are not subject a high degree of physical or biological mixing. The most likely cause of the changing ²¹⁰Pb gradient is accelerating sedimentation. The ¹³⁷Cs and ²⁴¹Am stratigraphic dates can be used to resolve differences between the various ²¹⁰Pb

4.2. Sites with recent increases in sedimentation rates

Tab. 2. ²¹⁰Pb chronology of Øvre Neådalsvatn core OVNE4 (in italics extrapolated dates).

Depth	Dat	te	Sedimenta	tion rate	Depth	Da	ate	Sediment	tation rate
cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹
0.00	1996				6.00	1898	4		0.056
0.20	1994	1	A	0.079	6.20	1894	5	A	0.055
0.40	1991	1		0.075	6.40	1891	5		0.053
0.60	1988	1		0.071	6.60	1887	5		0.052
0.80	1985	1		0.066	6.80	1883	5		0.052
1.00	1982	1		0.061	7.00	1879	5		0.051
1.20	1979	1		0.058	7.20	1875	5		0.050
1.40	1975	1		0.056	7.40	1871	5		0.049
1.60	1972	1		0.057	7.60	1867	6		0.049
1.80	1968	2		0.059	7.80	1863	6		0.049
2.00	1965	2		0.061	8.00	1859	6		0.048
2.20	1962	2		0.062	8.20	1855	7		0.046
2.40	1958	2		0.061	8.40	1850	7		0.045
2.60	1955	2	I	0.060	8.60	1846	7	I	0.043
2.80	1952	2	0.010	0.058	8.80	1841	7	0.010	0.043
3.00	1948	2	1	0.056	9.00	1836	7	1	0.044
3.20	1945	3		0.055	9.20	1832	8		0.045
3.40	1941	3		0.055	9.40	1827	8		0.046
3.60	1937	3		0.057	9.60	1823	8		0.047
3.80	1934	3		0.059	9.80	1819	8		0.049
4.00	1930	3		0.061	10.00	1815	8		0.050
4.20	1927	3		0.063	10.20	1811	8		0.052
4.40	1924	3		0.064	10.40	1807	9		0.055
4.60	1921	3		0.065	10.60	1803	9		0.057
4.80	1918	4		0.064	10.80	1800	9		0.060
5.00	1915	4		0.062	11.00	1797	9		0.062
5.20	1912	4		0.061	11.20	1794	9		0.062
5.40	1908	4		0.060	11.40	1790	9		0.060
5.60	1905	4	▼	0.059	11.60	1787	9	▼	0.057
5.80	1901	4		0.058	11.80	1783	10		0.057

The results for OVRE4 (the master core) are virtually identical to those from two other cores from Øvre Neådalsvatn dated by ²¹⁰Pb. OVRE7, also collected in 1996 as part of the MOLAR project, had a mean sedimentation rate of 0.0102 ± 0.0004 g cm⁻² y⁻¹. OVRE1, collected in 1991 as part of the earlier AL:PE project had a mean sedimentation rate of 0.0098 ± 0.0006 g cm⁻² y⁻¹. In view of the apparent temporal and spatial stability of sediment accumulation in this lake, it would appear relatively safe to extrapolate the chronology of ØVRE4 back to *ca*1781, using the mean post-1860 sedimentation rate.

dating models resulting from these changes.

4.2.1. Saanajärvi

Equilibrium of total ²¹⁰Pb activity with the supporting ²²⁶Ra was reached at a depth of between 5-6 cm. In view of the high surficial ²¹⁰Pb activity it is likely that this represents a period of about 150 years. Between *ca* 2-5 cm the unsupported ²¹⁰Pb *versus* depth profile is closely approximated by an exponential function. Above *ca* 2 cm there is a significant deviation from this relationship (Fig. 3i(a)).

Fig. 3. Fallout radionuclides in (i) Saanajärvi, (ii) Gossenköllesee, (iii) Redó showing (a) unsupported ²¹⁰Pb and (b) ¹³⁷Cs activities *versus* depth in the core. In each of these cores there is evidence of acceleration sedimentation rates in recent decades.

The ¹³⁷Cs activity versus depth profile (Fig. 3i(b)) has a well-resolved subsurface peak at 0.7 cm that both the standard ²¹⁰Pb models (CRS and CIC) suggest is a record of fallout from the 1986 Chernobyl accident. Downward migration of Chernobyl ¹³⁷Cs may have partially obscured the weapons fallout record. The distribution of the ¹³⁷Cs inventory does however suggest that the period of maximum weapons fallout is a little above 2 cm. The CRS ²¹⁰Pb dating model places 1963 at a depth of 1.7 cm, very close to a small subsidiary ¹³⁷Cs peak at 1.5 cm that may record the 1963 fallout maximum. The apparent agreement suggests that ²¹⁰Pb supply rates have not changed significantly in recent decades and that the CRS model should be applicable to the whole of the core. Calculations using this model (Tab. 3) show that sedimentation rates from the mid 19^{th} century through to ca 1960 were relatively stable, with a mean value of 0.012 ± 0.001 g cm⁻² y⁻¹ (0.024 ± 0.002 cm y⁻¹). Since then there has been a significant increase, and the mean sedimentation rate during the past 30 vears is calculated to be 0.025 ± 0.005 g cm⁻² v⁻¹ (0.053) \pm 0.010 cm y⁻¹). Data near the base of the core suggest that sedimentation rates may have been a little lower in the mid 19^{th} century. Extrapolated dates below the base of the ²¹⁰Pb record have been calculated using the estimated basal value of 0.0078 g cm⁻² y⁻¹.

4.2.2. Gossenköllesee

From the equilibrium depth at 9 cm, up to ca 4.5 cm, the unsupported ²¹⁰Pb profile in this core more or less follows an exponential relation (Fig. 3ii(a)). At 4.5 cm there is however a very abrupt change. Activity is virtually constant from 4.5 cm through to 1.5 cm, and even declines in the surficial sediments.

A well resolved peak in ¹³⁷Cs activity between 2.0-2.75 cm (Fig. 3ii(b)) precludes sediment mixing as an explanation for the ²¹⁰Pb record. The high ¹³⁷Cs concentrations in the peak together with evidence from soil cores in the catchment show that this feature almost certainly records fallout from the 1986 Chernobyl accident. A small peak in ²⁴¹Am activity at 3.5-4.25 cm coupled with a small shoulder on the ¹³⁷Cs profile identifies sediments at this depth as dating from *ca*1963, the year of maximum fallout from the atmospheric testing

Tab. 3. ²¹⁰Pb chronology of Saanajärvi core SJ96/4 (in italics extrapolated dates).

Depth	Date	:	Sedimenta	ation rate	Depth	Date		Sedimenta	ation rate	
cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	
0.00	1996				3.00	1917	3	0.012	0.024	
0.20	1994	2	0.039	0.086	3.20	1909	4	0.010	0.021	
0.40	1991	2	0.030	0.064	3.40	1899	5	0.011	0.022	
0.60	1987	2	0.023	0.046	3.60	1890	7	0.012	0.024	
0.80	1983	2	0.026	0.054	3.80	1883	8	0.013	0.027	
1.00	1979	2	0.025	0.053	4.00	1875	10	0.016	0.030	
1.20	1975	2	0.022	0.047	4.20	1868	12	0.015	0.025	
1.40	1971	2	0.020	0.043	4.40	1857	15	0.0089	0.015	
1.60	1966	2	0.016	0.036	4.60	1843	22	0.0083	0.016	
1.80	1960	2	0.017	0.037	4.8	1831	27	0.0081	0.016	
2.00	1955	2	0.017	0.035	5.0	1819	32	0.0078	0.016	
2.20	1948	2	0.014	0.030	5.2	1806	32	0.0078	0.016	
2.40	1941	2	0.012	0.026	5.4	1793	33	0.0078	0.016	
2.60	1933	3	0.012	0.025	5.6	1781	34	0.0078	0.016	
2.80	1926	3	0.013	0.027						

Tab. 4. ²¹⁰Pb chronology of Gossenköllesee core GKS2 (in italics extrapolated dates).

Depth	Da	ate	Sediment	ation rate	Depth	Da	nte	Sediment	ation rate
cm	AD	±	$g cm^{-2} y^{-1}$	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹
0.00	1996				5.50	1915	3	0.0022	0.029
0.25	1996	2	0.0132	0.450	5.75	1906	3	0.0025	0.034
0.50	1995	2	0.0131	0.428	6.00	1899	4	0.0027	0.040
0.75	1994	2	0.0134	0.412	6.25	1893	4	0.0028	0.045
1.00	1994	2	0.0138	0.396	6.50	1888	4	0.0029	0.051
1.25	1993	2	0.0125	0.339	6.75	1883	5	0.0028	0.050
1.50	1992	2	0.0095	0.237	7.00	1878	5	0.0024	0.043
1.75	1991	2	0.0075	0.169	7.25	1872	6	0.0022	0.040
2.00	1989	2	0.0066	0.137	7.50	1865	6	0.0022	0.041
2.25	1987	2	0.0059	0.114	7.75	1859	7	0.0022	0.042
2.50	1985	2	0.0055	0.099	8.00	1854	8	0.0022	0.044
2.75	1982	2	0.0052	0.089	8.25	1848	9	0.0022	0.045
3.00	1979	2	0.0049	0.082	8.50	1839	11	0.0022	0.044
3.25	1976	2	0.0045	0.075	8.75	1837	11	0.0022	0.043
3.50	1972	2	0.0040	0.067	9.00	1831	11	0.0022	0.041
3.75	1968	2	0.0035	0.058	9.25	1825	11	0.0022	0.039
4.00	1964	2	0.0032	0.048	9.50	1818	12	0.0022	0.036
4.25	1958	2	0.0028	0.041	9.75	1811	12	0.0022	0.034
4.50	1951	2	0.0026	0.035	10.00	1804	12	0.0022	0.033
4.75	1943	2	0.0023	0.030	10.25	1796	13	0.0022	0.033
5.00	1934	2	0.0020	0.025	10.50	1788	13	0.0022	0.034
5.25	1925	2	0.0019	0.025	10.75	1781	14	0.0022	0.035

of nuclear weapons. ²¹⁰Pb dates calculated using the CRS dating model place 1986 at a depth of 2.25-2.5 cm and 1963 at a depth of 3.75-4.0 cm, in excellent agreement with the ¹³⁷Cs and ²⁴¹Am dates. We again infer that the CRS model should be applicable to the whole core. Using this model, the transition at 4.5 cm is dated 1951. Before this time sedimentation rates appear to have been slow but relatively uniform for more than a century. The mean pre-1950 sedimentation rate is calculated to be 0.0022 ± 0.0002 g cm⁻² y⁻¹ (0.036 cm y⁻¹). Since then sedimentation rates have increased dramatically, particularly during the past decade, though the present-day value of *ca* 0.013 g cm⁻² y⁻¹ is still only comparable to the long-term sedimentation rate in Øvre Neådalsvatn. The detailed results are given in table 4. Extrapolated dates below the ²¹⁰Pb dating horizon have

been calculated using the mean pre-1950 sedimentation rate.

4.2.3. Redó

The unsupported ²¹⁰Pb activity *versus* depth profile (Fig. 3iii(a)) again has two distinct zones:

- an upper zone (0-3 cm) with a shallow ²¹⁰Pb gradient and a number of minor irregularities;
- a deeper zone (3-7 cm) with a steeper ²¹⁰Pb gradient in which unsupported activity declines more or less exponentially with depth.

Radioactive equilibrium is reached at a depth of about 9 cm. Between 7-9 cm there is a small irregularity that may record a disturbance in the latter half of the 19th century.

Tab. 5. ²¹⁰Pb chronology of Redó Lake core RCM2 (in italics extrapolated dates).

Depth	Da	ate	Sediment	ation rate	Depth	Da	ite	Sediment	ation rate
cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹
					3.75	1920	2	0.0048	0.035
0.00	1997				3.90	1915	3	0.0050	0.037
0.15	1995	2	0.0099	0.097	4.05	1911	3	0.0053	0.038
0.30	1994	2	0.0100	0.096	4.20	1907	3	0.0056	0.039
0.45	1992	2	0.0101	0.096	4.35	1903	3	0.0058	0.040
0.60	1991	2	0.0102	0.095	4.50	1900	4	0.0059	0.041
0.75	1989	2	0.0098	0.089	4.65	1896	4	0.0061	0.042
0.90	1987	2	0.0089	0.075	4.80	1892	4	0.0062	0.043
1.05	1985	2	0.0082	0.066	4.95	1889	4	0.0067	0.046
1.20	1983	2	0.0079	0.061	5.10	1886	4	0.0074	0.051
1.35	1980	2	0.0076	0.057	5.25	1883	5	0.0082	0.056
1.50	1977	2	0.0072	0.054	5.40	1880	5	0.0083	0.056
1.65	1974	2	0.0068	0.051	5.55	1877	5	0.0077	0.052
1.80	1971	2	0.0064	0.047	5.70	1874	5	0.0072	0.048
1.95	1968	2	0.0062	0.045	5.85	1871	5	0.0071	0.047
2.10	1965	2	0.0061	0.044	6.00	1868	6	0.0076	0.052
2.25	1962	2	0.0062	0.044	6.30	1863	6	0.0086	0.060
2.40	1958	2	0.0063	0.045	6.60	1858	7	0.0096	0.067
2.55	1955	2	0.0063	0.045	6.90	1852	8	0.0085	0.060
2.70	1951	2	0.0058	0.042	7.20	1845	9	0.0054	0.039
2.85	1947	2	0.0049	0.036	7.50	1837	11	0.0038	0.028
3.00	1943	2	0.0043	0.032	7.80	1826	15	0.0038	0.027
3.15	1938	2	0.0039	0.030	8.10	1815	16	0.0038	0.027
3.30	1933	2	0.0039	0.030	8.40	1804	17	0.0038	0.027
3.45	1929	2	0.0042	0.032	8.70	1793	18	0.0038	0.027
3.60	1924	2	0.0045	0.034	9.00	1781	19	0.0038	0.027

The ¹³⁷Cs activity *versus* depth profile (Fig. 3iii(b)) has a well defined but relatively poorly resolved peak. The maximum activity occurs at 1 cm depth, though the peak is skewed and high concentrations are recorded between 0.8-2.5 cm. Traces of ²⁴¹Am between 0.9-2.8 cm confirm the presence of weapons fallout between these depths, but do not allow precise identification of the 1963 depth. There were some indications of the presence of Chernobyl fallout in an earlier 1993 core from Redó and it is likely that the ¹³⁷Cs peak at 1 cm records the 1986 Chernobyl accident. The record between 1-2.5 cm will represent weapons fallout partially obscured by downward migrating Chernobyl ¹³⁷Cs.

²¹⁰Pb dates calculated using the CRS dating model place 1986 and 1963 at depths of 1 cm and 2.2 cm respectively, in good agreement with the conjecture of a Chernobyl origin for the ¹³⁷Cs peak at 1 cm and a 1960s origin for sediments just above 2.5 cm. The chronology is similar to that for the 1993 core in that there were relatively low sedimentation rates up to ca 1950 and elevated sedimentation rates since then. Using the CRS model, the detailed results (Tab. 5) show that prior to 1950 sedimentation rates were low, varying between 0.004-0.008 g cm⁻² y⁻¹. An episode of more rapid sedimentation in the latter half of the 19th century not recorded in the 1993 core may be due to a local short-term slump or inwash event. Excluding the inwash event the two Redó cores have an almost identical mean pre-1950 sedimentation rate of 0.0046 g cm⁻² y⁻¹. The basal value of 0.0038 g cm⁻² y⁻¹ has been used to extrapolate the chronology below the 210 Pb dating horizon back to 1781. Because of the inwash event the extrapolated dates do however have a higher degree of uncertainty.

4.3. Sites with irregular changes in sedimentation

4.3.1. Nižné Terianske Pleso

The unsupported ²¹⁰Pb activity *versus* depth profile (Fig. 4i(a)) has a major irregularity below *ca* 1.5 cm that appears to be associated with a layer of dense sediment between 1.4-4.0 cm. There are a number of other dense layers at various depths throughout the core, in particular between 6-8 cm, just beneath the ²¹⁰Pb equilibrium depth. Similar features were observed in an earlier 1993 core from this lake.

Very high ¹³⁷Cs concentrations in the surficial sediments indicate that the ¹³⁷Cs record in this core is dominated by fallout from the 1986 Chernobyl accident. Significant levels of ²⁴¹Am activity detected between 0.2-1.0 cm (Fig. 4i(b)) suggest that sediments between these two depths record the period of maximum fallout from the atmospheric testing of nuclear weapons in the 1960s. Because of the close proximity to the surficial sediments the weapons ¹³⁷Cs record will almost certainly have been obscured by downward migration of Chernobyl ¹³⁷Cs.

Neither of the simple ²¹⁰Pb dating models date this core satisfactorily. The CRS model suggests that the non-monotonic section of the ²¹⁰Pb profile between 1.5-4 cm was associated with an episode of rapid sedimentation in the early part of the 20th century, but places 1963 at a depth of 1.2 cm, a little below that indicated

Fig. 4. Fallout radionuclides in (i) Nižné Terianske, (ii) Hagelsee, (iii) Ledvicah showing (a) unsupported ²¹⁰Pb and (b) ¹³⁷Cs activities *versus* depth in the core. In each of these cores there is evidence of irregular episodes of accelerated sedimentation.

Tab. 6. ²¹⁰Pb chronology of Nižné Terianske core TERI96/7 (in italics extrapolated dates).

Depth	Da	nte	Sedimenta	ation rate	Depth	Da	te	Sedimenta	ation rate
cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹
0.0	1996				3.2	1909	5	0.0104	0.046
0.2	1992	2	0.0038	0.044	3.4	1904	6	0.0090	0.040
0.4	1987	2	0.0042	0.037	3.6	1899	7	0.0083	0.032
0.6	1981	2	0.0044	0.032	3.8	1892	9	0.0064	0.027
0.8	1974	2	0.0044	0.028	4.0	1884	10	0.0034	0.022
1.0	1967	2	0.0042	0.025	4.2	1872	10	0.0034	0.020
1.2	1959	2	0.0038	0.022	4.4	1862	11	0.0034	0.020
1.4	1949	2	0.0067	0.025	4.6	1852	12	0.0034	0.020
1.6	1943	2	0.0101	0.033	4.8	1842	13	0.0034	0.021
1.8	1937	2	0.0132	0.039	4.9	1838	13	0.0034	0.021
2.0	1932	2	0.0150	0.043	5.0	1833	14	0.0034	0.021
2.2	1928	3	0.0157	0.045	5.2	1823	15	0.0034	0.021
2.4	1923	3	0.0152	0.049	5.4	1814	15	0.0034	0.021
2.6	1920	4	0.0147	0.058	5.6	1803	16	0.0034	0.020
2.8	1916	4	0.0141	0.060	5.8	1794	17	0.0034	0.019
3.0	1913	5	0.0126	0.053	6.0	1784	18	0.0034	0.017

by the ²⁴¹Am results. The CIC model is in better agreement with the ¹³⁷Cs/²⁴¹Am record, placing 1986 at 0.3 cm and 1963 at 0.9 cm, but cannot date the non-monotonic section in which initial concentrations were clearly diluted. Looking at the results as a whole it appears that the record in this lake is one of low but uniform sedimentation throughout most of its history, punctuated

from time to time by episodes of rapid accumulation of dense sediment, possibly due to intermittent slumps from the catchment or from the margins of the lake. Importation of additional ²¹⁰Pb to the core site with the slump has resulted in just a partial dilution of the initial ²¹⁰Pb concentration, causing errors in the CRS model when applied to the core as a whole. Such cores can

however be dated using a piecewise CRS model (Appleby 1998) in which the ²¹⁰Pb supply is assumed to be uniform only within each distinct zone in the core. Assuming uniform sedimentation rates in the upper zone (<1.4 cm), the lower boundary of this zone at 1.4 cm is dated 1949. The mean post-1949 sedimentation rate is calculated to be 0.0041 ± 0.0014 g cm⁻² y⁻¹, and the mean ²¹⁰Pb flux during this period 77 Bq m⁻² y⁻¹. Assuming that these normal conditions also apply to sediments in the deeper zone below 4 cm, the upper boundary of the deeper zone at 4 cm is dated 1884. The intermediate zone (1.4-4.0 cm) thus spans the period 1884-1949. The mean sedimentation rate during this time is 0.010 g cm⁻² y⁻¹, and the mean ²¹⁰Pb flux 123 Bq m⁻² y⁻¹. Although the detailed results (Tab. 6) suggest elevated accumulation rates throughout the whole of this period, these are most likely an artefact of the calculations caused by the intrusion of a major disturbance on a slow depositional sequence. The episode of rapid sedimentation is likely to have been a relatively brief event in the late 1920s. The 1993 core records a similar event at about the same time. Since there may have been some mixing with adjoining layers, dates of sediments between 1.4 - 4 cm are problematic. Dates above 1.4 cm and below 4 cm that weren't influenced by this event are likely to be more secure. The mean sedimentation rate in sediments below 4 cm is estimated to be 0.0034 g cm^{-2} , and this value has been used to extrapolate the chronology back to the late 18th century.

4.3.2. Hagelsee

The unsupported ²¹⁰Pb activity *versus* depth profile in this core (Fig. 4ii(a)) can be divided into three distinct zones.

- In the uppermost zone (0-2 cm) activity declines steeply with depth, from a very high value ($3290 \pm 58 \text{ Bq kg}^{-1}$) in the surficial sample to $684 \pm 23 \text{ Bq kg}^{-1}$ at 1.5-2.0 cm.
- In the middle zone (2-4.5 cm) ²¹⁰Pb activity continues to decline more or less exponentially with depth though at a distinctly shallower gradient.
- In the deeper zone (4.5-9.5 cm) the profile becomes more irregular, with significant non-monotonic features at 6-7 cm and 8.5-9 cm. Both coincide with layers of relatively dense inorganic sediment and may record brief episodes of rapid sedimentation due e.g. to slump events.
- ²¹⁰Pb equilibrium occurs at a depth of about 10 cm.

The ¹³⁷Cs profile (Fig. 4ii(b)) has a fairly well resolved peak between 1.5-2.5 cm depth. Traces of ²⁴¹Am suggest that this feature records the 1963 fallout maximum from the atmospheric testing of nuclear weapons (Appleby *et al.* 1991). Although fallout from the 1986 Chernobyl accident was widespread in Switzerland, results from Brienzersee (*ca* 4 km from Hagelsee) indicate relatively little Chernobyl deposition in this locality (Lotter, pers. comm.). Dates calculated by ²¹⁰Pb place 1963 at between 1.1 cm (CIC model) and 2.75 cm (CRS model), supporting the inference that the ¹³⁷Cs peak at 2.0 ± 0.5 cm is of weapons origin. The discrepancies between the two sets of ²¹⁰Pb dates and the ¹³⁷Cs record suggest that the recent reduction in sedimentation rates implied by both models is associated with a small decline in the ²¹⁰Pb flux. Since the changes are broadly in proportion, the most likely cause is a shift in the pattern of sediment focussing.

Although corrected CRS model dates can be calculated using the 1963 ¹³⁷Cs date as a reference point, errors can still arise due to variations in the ²¹⁰Pb supply rate at individual core sites due to local irregularities in the process of sedimentation. Where two or more cores have been assayed for radionuclides, uncertainties can be reduced by correlating the cores and treating them as a single record. Samples from a second MOLAR core (HAG96-3) were analysed at EAWAG (Switzerland) for ¹³⁷Cs and ²¹⁰Pb (Lotter *et al.* 2000). Combining the data from both cores, a chronology for the master core (HAG96-1) was calculated using the correlated CRS ²¹⁰Pb dating model (Oldfield *et al.* 1980), and the 1963 ¹³⁷Cs date as a reference point. The results, given in table 7, indicate a relatively uniform sedimentation rate throughout most of the past 150 years, fluctuating about a mean value of 0.011 ± 0.002 g cm⁻² y⁻¹ apart from a single brief episode of very rapid accumulation between 6 and 7 cm (dated 1883-1894). This event is recorded as a layer of dense sediment in all 5 Hagelsee cores, and by dilution features in both ²¹⁰Pb profiles (at 6-7 cm in HAG96-1 and 7-8 cm in HAG96-3). Sedimentation rates appear to have decline during the past few decades. The mean post-1963 sedimentation rate in HAG96-1 is $0.0061 \pm 0.0010 \text{ g cm}^{-2} \text{ y}^{-1}$.

Because of the large uncertainties in calculated dates near the ²¹⁰Pb dating horizon, dates prior to 1883 have been recalculated using the mean 1894-1963 accumulation rate of 0.011 ± 0.002 g cm⁻² y⁻¹. This value has also been used to extrapolate the chronology below the dating horizon back to the late 18th century.

4.3.3. Jezero Ledvicah

The record of unsupported ²¹⁰Pb activity in this core has several non-monotonic features, the most severe of which occurs between 1.8-3.6 cm (Fig. 4iii(a)). Although accumulation rates appear to have been much more rapid than at other sites, ²¹⁰Pb equilibrium not being reached until a depth of about 20 cm, this is mainly due to the very low sediment density. Expressed in terms of cumulative dry mass the depth of the ²¹⁰Pb dating horizon is comparable to that at other sites.

The ¹³⁷Cs activity *versus* depth profile (Fig. 4iii(b)) is dominated by a well resolved peak at 0.9 cm. In view of the very high ¹³⁷Cs activity in the peak (19380 \pm 127 Bq kg⁻¹), the most likely origin is fallout from the 1986 Chernobyl accident. This is confirmed by the detection

Tab. 7. ²¹⁰Pb chronology of Hagelsee core HAG96/1 (in italics extrapolated dates).

Depth	Da	ite	Sediment	ation rate	Depth	Da	te	Sediment	ation rate
cm	AD	±	$g cm^{-2} y^{-1}$	cm y ⁻¹	cm	AD	±	$g \text{ cm}^2 \text{ y}^1$	cm y ⁻¹
0.00	1996				5.75	1896	6	0.0173	0.057
0.25	1992	2	0.0043	0.064	6.00	1893	6	0.046	0.110
0.50	1989	2	0.0046	0.061	6.25	1890	6	0.075	0.162
0.75	1985	2	0.0049	0.058	6.50	1888	6	0.069	0.143
1.00	1981	3	0.0056	0.057	6.75	1886	6	0.064	0.124
1.25	1976	3	0.0062	0.055	7.00	1882	6	0.040	0.084
1.50	1972	4	0.0078	0.061	7.25	1878	6	0.015	0.044
1.75	1967	4	0.0093	0.066	7.50	1870	7	0.011	0.042
2.00	1964	4	0.0114	0.077	7.75	1863	8	0.011	0.040
2.25	1961	5	0.0135	0.087	8.00	1858	9	0.011	0.042
2.50	1958	5	0.0134	0.083	8.25	1853	10	0.011	0.044
2.75	1955	5	0.0133	0.078	8.50	1846	11	0.011	0.041
3.00	1951	5	0.0129	0.073	8.75	1840	12	0.011	0.039
3.25	1948	5	0.0125	0.068	9.00	1834	14	0.011	0.039
3.50	1944	5	0.0122	0.065	9.25	1827	17	0.011	0.039
3.75	1940	5	0.0119	0.061	9.50	1821		0.011	0.039
4.00	1935	5	0.0108	0.053	9.75	1815		0.011	0.039
4.25	1931	5	0.0097	0.044	10.00	1808		0.011	0.039
4.50	1925	5	0.0111	0.050	10.25	1801		0.011	0.039
4.75	1920	5	0.0125	0.056	10.50	1795		0.011	0.039
5.00	1914	5	0.0093	0.042	10.75	1790		0.011	0.039
5.25	1908	5	0.0061	0.027	11.00	1783		0.011	0.039
5.50	1902	5	0.0117	0.042					

of a similar peak in ¹³⁴Cs concentrations at the same depth. The ¹³⁴Cs/¹³⁷Cs ratio in the peak is typical of Chernobyl fallout. A smaller but still well resolved ¹³⁷Cs peak was detected further down the core at 3.9 cm depth. The presence of a significant peak in ²⁴¹Am activity at the same depth confirms that this feature records the 1963 weapons fallout maximum.

²¹⁰Pb dates calculated using the CRS model place 1986 at a depth of 2.6 cm and 1963 at a depth of 7.7 cm. The CIC model could not be used because of the nonmonotonic variations in ²¹⁰Pb activity near the top of the core. The large discrepancies between the ²¹⁰Pb and ¹³⁷Cs dates show that in recent decades there have been significant changes in the ²¹⁰Pb supply rate. Applying the CRS model in a piecewise manner using the 1986 and 1963 ¹³⁷Cs dates as reference points, three brief episodes of rapid sedimentation can be identified, in the late 19th century, between 1944-56, and in the mid-1970s. These are thought to be due to sediment slumps caused by earthquakes in this region in 1895, 1942 and 1975/6 (Brancelj et al. 2000). Normal sedimentation rates excluding these events are in the range 0.0052-0.0071 g cm⁻² y⁻¹. The results are given in detail in table 8. Extrapolated sediment dates below the ²¹⁰Pb dating horizon have been calculated using the estimated basal sedimentation rate of 0.005 g cm⁻² y⁻¹.

5. DISCUSSION

Table 9 summarises a number of radiometric parameters from each site. The high unsupported ²¹⁰Pb concentrations in the surficial sediments (ranging from 508-3116 Bq kg⁻¹) are indicative of the low sedimentation rates typical of these lakes. Mean accumulation

rates since *ca* 1850 range from 0.0032 g cm⁻² y⁻¹ in Gossenköllesee to 0.015 g cm⁻² y⁻¹ in Saanajärvi. Although the high concentrations are advantageous in the sense that they push the ²¹⁰Pb dating horizon back to the mid 19th century (*ca* 7 ²¹⁰Pb half-lives), the low sedimentation rates do make the sediment record vulnerable to disturbance by quite small events. These are observed in a number of cores as irregularities in the ²¹⁰Pb record and/or abrupt changes in the dry bulk density. The most reliable results are those from sites where there has been long-term stability in the supply of both sediment and fallout ²¹⁰Pb At such sites it is possible to extrapolate dates below the ²¹⁰Pb dating horizon back to 1781 with a high degree of confidence.

5.1. ²¹⁰Pb supply rates

Direct measurements of fallout carried out within the MOLAR program indicate that the atmospheric flux of 210 Pb is between 66-91 Bq m⁻² y⁻¹ per meter of rainfall at those sites close to the Atlantic or Arctic (Øvre Neådalsvatn, Saanajärvi, Redó), and between 130-173 Bq m⁻² y⁻¹ per meter of rainfall at sites in Central Europe (Hagelsee, Gossenköllesee, Ledvicah, Nižné Terianske Pleso). Cores sites where the mean 210 Pb supply rate (Tab. 9) is well in excess of the estimated atmospheric flux include Saanajärvi and Redó. Cores sites that appear to have a significant deficiency include Terianske, Gossenköllesee and Ledvicah. High 210 Pb supply rates can be due to sediment focussing, or significant inputs from the catchment. Low values can be due to remobilisation of sediment away from the core site. Differences between the atmospheric flux (which can be assumed constant) and the 210 Pb supply rate will not necessarily

Depth	Dat	te	Sedimenta	tion rate	Depth	Dat	e	Sedimenta	tion rate
cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹	cm	AD	±	g cm ⁻² y ⁻¹	cm y ⁻¹
0.00	1996				9.60	1937	4	0.0070	0.109
0.20	1994	1	0.0058	0.096	9.80	1935	4	0.0070	0.108
0.40	1992	1	0.0056	0.096	10.00	1933	4	0.0069	0.108
0.60	1990	1	0.0050	0.095	10.20	1932	4	0.0069	0.107
0.80	1988	2	0.0047	0.099	10.40	1930	4	0.0069	0.107
1.00	1986	2	0.0046	0.104	10.60	1928	4	0.0070	0.108
1.20	1984	2	0.0057	0.113	10.80	1926	4	0.0072	0.110
1 40	1982	2	0.0070	0.124	11.00	1924	4	0.0073	0.108
1 60	1981	2	0.0087	0.129	11.20	1922	4	0.0074	0.102
1 80	1979	2	0.0098	0.138	11.40	1920	4	0.0072	0.095
2 00	1978	2	0.0105	0.151	11.60	1918	4	0.0069	0.087
2 20	1976	2	0.0109	0.159	11.80	1916	4	0.0064	0.080
2.20	1975	2	0.0110	0.164	12.00	1913	5	0.0060	0.076
2.60	1974	2	0.0111	0.162	12.00	1910	5	0.0057	0.070
2.00	1973	2	0.0107	0.151	12.20	1908	5	0.0054	0.068
3.00	1972	2	0.0107	0.131	12.40	1905	6	0.0052	0.000
3 20	1970	2	0.0090	0.132	12.00	1901	6	0.0051	0.000
3.40	1968	2	0.0065	0.120	13.00	1898	7	0.0051	0.000
3.60	1966	2	0.0005	0.116	13.00	1895	7	0.0057	0.070
3.80	1965	2	0.0030	0.110	13.40	1803	8	0.0070	0.072
3.80	1905	2	0.0038	0.119	13.40	1095	0	0.0070	0.094
4.00	1905	2	0.0033	0.122	13.00	1891	0	0.0089	0.113
4.20	1901	2	0.0034	0.122	13.80	1090	9	0.0110	0.129
4.40	1900	2	0.0037	0.140	14.00	1000	9	0.0110	0.135
4.00	1950	3	0.0041	0.107	14.20	100/	9	0.0103	0.130
4.80	1957	4	0.010	0.193	14.40	1003	10	0.0093	0.110
5.00	1937	4	0.010	0.220	14.00	1004	10	0.0085	0.087
5.20	1950	4	0.019	0.224	14.60	1001	10	0.0073	0.071
5.40	1955	4	0.020	0.225	15.00	18/8	11	0.0067	0.039
5.00	1954	4	0.020	0.239	15.20	18/4	12	0.0061	0.054
5.80	1955	4	0.020	0.252	15.40	18/0	13	0.0056	0.054
6.00	1952	4	0.020	0.265	15.60	1866	14	0.0052	0.055
6.20	1951	2	0.020	0.280	15.80	1863	16	0.0050	0.057
6.40	1951	5	0.020	0.287	16.00	1859	17	0.0050	0.059
6.60	1950	5	0.020	0.297	16.20	1850	19	0.0050	0.058
6.80	1949	5	0.020	0.315	16.40	1855	21	0.0050	0.058
7.00	1949	5	0.020	0.337	16.00	1849	22	0.0050	0.057
7.20	1948	2	0.020	0.362	16.80	1846	23	0.0050	0.056
7.40	1948	2	0.020	0.374	17.00	1842	24	0.0050	0.056
7.60	1947	2	0.020	0.369	17.20	1838	24	0.0050	0.052
/.80	1947	2	0.020	0.356	17.40	1835	25	0.0050	0.045
8.00	1946	5	0.020	0.339	17.60	1830		0.0050	0.038
8.20	1945	4	0.019	0.320	17.80	1824		0.0050	0.034
8.40	1945	4	0.018	0.294	18.00	1818		0.0050	0.031
8.60	1944	4	0.017	0.252	18.20	1811		0.0050	0.029
8.80	1943	4	0.013	0.198	18.40	1804		0.0050	0.029
9.00	1942	4	0.010	0.155	18.60	1797		0.0050	0.029
9.20	1941	4	0.0071	0.129	18.80	1790		0.0050	0.029
9.40	1939	4	0.0070	0.115	19.00	1783		0.0050	0.029

Tab. 8. ²¹⁰Pb chronology of Jezero v Ledvicah core LEDV5.

invalidate the CRS model. Errors will only arise if the intensity of these processes changes over a significant period of time.

The results from Øvre Neådalsvatn, Saanajärvi, Redó and Gossenköllesee suggest that the processes controlling ²¹⁰Pb supply rates at these sites have been relatively stable over a long period of time. In cores from Terianske, Ledvicah and Hagelsee there was however evidence of varying inputs of ²¹⁰Pb. At such sites, for sections of the core bounded by reference points of known ages t_1 and t_2 , the mean ²¹⁰Pb supply rate during the intervening period can be calculated using the formula:

$$P = \frac{\lambda \Delta A}{\mathrm{e}^{-\lambda t_1} - \mathrm{e}^{-\lambda t_2}}$$

where ΔA is the ²¹⁰Pb inventory between the reference points (Appleby 1998). At Hagelsee, changes in ²¹⁰Pb supply rates appear to be due to variations in the pattern of sediment focussing. At Terianske the cause appears to be a sediment slump in the 1920s. At Ledvicah disproportionately higher fluxes in the pre-1963 sediments point to a significant catchment input during the earlier part of the record. In spite of these processes, reliable dates can be still be calculated at these sites

Tab. 9. Radiometric inventories of the MOLAR cores. Also shown are the unsupported ²¹⁰Pb concentrations in the surficial sediments, and the ²¹⁰Pb fluxes required to sustain the measured ²¹⁰Pb inventories. The ¹³⁷Cs inventories included estimates of the contributions from nuclear weapons tests and Chernobyl fallout.

	Uns	upported ²¹⁰ Pb		¹³⁷ Cs inventory			
	Surface conc. Bq kg ⁻¹	Inventory Bq m ⁻²	Flux Bq m ⁻² y ⁻¹	Weapons Bq m ⁻²	Chernobyl Bq m ⁻²		
Saanajärvi	914	12137	378	10773	1276		
Øvre Neådalsvatn	888	3030	94	3879	1487		
Nižné Terianske	2049	2760	86	2466	2627		
Gossenköllesee	508	2135	66	2971	640		
Hagelsee	590	7337	228	11130			
Ledvicah	1162	5260	164	13790	22672		
Redó	3116	10085	314	17568			

Fig. 5. Sedimentation rates *versus* time for (**a**) sites with relatively uniform accumulation pre-1963 and (**b**) sites with significant irregularities in the deeper sections of the core.

using the composite CRS model, though the method does becomes increasingly uncertain when the ²¹⁰Pb irregularities occur in the deeper sections of the core.

5.2. Dry Bulk density changes

Layers of dense sediment create two kinds of uncertainty, particularly in the deeper sections of a core. Where they occur just above the ²¹⁰Pb dating horizon, large standard errors in the unsupported ²¹⁰Pb concentrations make it difficult to determine variations in sedimentation rates related to these events. Where they occur just below the dating horizon, extrapolation of the ²¹⁰Pb chronology becomes very problematic. Because of the slow accumulation rates at the MOLAR sites, an er-

ror of 1 cm due e.g. to an inwash event will on average cause a dating uncertainty of about 20 years. Sites where such changes occur include Terianske, Hagelsee, Ledvicah, and to a lesser extent, Gosenköllesee.

6. CONCLUSION

Histories of sedimentation rates for all seven sites since the mid- 19^{th} century are summarised in figure 5. Results for sites with relatively uniform accumulation up until the last 30 years or so are shown in figure 5(a). Results for sites with greater irregularities are shown in figure 5(b).

The sedimentation rates shown for Øvre Neådalsvatn (Fig. 5(a)) are the detailed values given directly by the CRS model calculations. In spite of the small irregular fluctuations shown in this diagram, differences between dates calculated directly from the CRS model and those calculated from the mean sedimentation rate are insignificant. The robustness of these results suggest that it is unlikely there are significant errors in the ²¹⁰Pb dates at sites where sedimentation rates have been uniform, or where changes in sedimentation rates have only occurred during the past few decades and been validated by independent stratigraphic dates. These include Øvre Neådalsvatn, Saanajärvi, Gossenköllesee, and Redó. Since none of these sites (apart possibly from Gossenköllesee) have major changes in dry bulk density in the early 19th century, reasonable confidence can also be placed in the extrapolated dates back to 1781.

Results for the sites shown in figure 5(b) (Terianske, Hagelsee, Ledvicah) are more problematic. The recent chronology at these sites is relatively secure because of the good 137 Cs/²⁴¹Am stratigraphic dates. The older dates are however less certain. The general pattern at these sites appears to be one in which short episodes of rapid accumulation are superimposed on longer periods of slow stable accumulation. Because the periods of the core, it is not possible to calculate sedimentation rates in the older sections with a high degree of confidence. The uncertainties are exacerbated by fluctuations in dry bulk density.

One method of assessing the overall reliability of the results from these latter sites is to compare the tabulated results with the 99% equilibrium depth, defined as the average depth at which the two simple ²¹⁰Pb dating parameters (concentrations and cumulative inventories) reach 99% equilibrium. It is a relatively robust measure of the depth corresponding to 148 years accumulation and dated 1848 in these cores. Values of the 99% equilibrium depths do not differ from the 1848 depths given in tables 2-8 by more than 11%, and the mean deviation for all 7 sites is just 5%. This suggests that in spite of the various uncertainties, gross errors at these sites are unlikely.

ACKNOWLEDGMENTS

This work is has been undertaken in the framework of the MOLAR research project funded by the European Commission, Environment and Climate Programme, Contract N° ENV4-CT95-0007. It rests on the work of many colleagues in the MOLAR project and all their contributions are gratefully acknowledged.

REFERENCES

- Agusti-Panareda, A. & R. Thompson. (2000). Retrodiction of air temperature at eleven remote alpine and arctic lakes in Europe from 1781-1997 AD. J. Paleolimnol.: (in press).
 Appleby, P.G. 1998. Dating recent sediments by ²¹⁰Pb: Prob-
- Appleby, P.G. 1998. Dating recent sediments by ²¹⁰Pb: Problems and solutions. *Proc. 2nd NKS/EKO-1 Seminar*, Helsinki, 2-4 April 1997, STUK, Helsinki: 7-24.
- Appleby, P.G. (2000). Chronostratigraphic techniques in recent sediments. In: W.M. Last & J.P.Smol (Eds), Developments in Paleoenvironmental Research. Volume 1, Tracking Environmental Changes in Lake Sediments: Physical and Chemical Techniques. Kluwer: (in press).
- Appleby, P.G., P.J. Nolan, D.W. Gifford, M.J. Godfrey, F. Oldfield, N.J. Anderson & R.W. Battarbee. 1986. ²¹⁰Pb dating by low background gamma counting. *Hydrobiologia*, 141: 21-27.
- Appleby, P.G. & F. Oldfield. 1978. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. *Catena*, 5: 1-8.
- Appleby, P.G. & F. Oldfield. 1983. The assessment of ²¹⁰Pb data from sites with varying sediment accumulation rates. *Hydrobiologia*,103: 29-35.
- Appleby, P.G., N. Richardson & P.J. Nolan. 1991. ²⁴¹Am dating of lake sediments. *Hydrobiologia*, 214: 35-42.
- Appleby, P.G., N. Richardson & P.J. Nolan. 1992. Self-absorption corrections for well-type germanium detectors. *Nucl. Inst. & Methods B*, 71: 228-233.
- Battarbee, R.W., J-A. Grytnes, J. Catalan, R. Thompson, P.G. Appleby, A. Korhola, H.J.B. Birks & A. Lami. (2000). Climate variability and ecosystem dynamics at remote Alpine and Arctic lakes: the last 200 years. J. Paleolimnol.: (in press).
- Brancelj, A., M. Šiško, G. Muri, C. Kamenik, P.G. Appleby, A. Lami, E. Shilland, N.L. Rose, S.J. Brooks, J.A. Dearing. (2000). Lake Jezero v Ledvici (NW Slovenia) - impacts of earthquakes and climate change to the lake ecosystem. J. Paleolimnol.: (in press).
- Goldberg, E.D. 1963. Geochronology with ²¹⁰Pb. In: *Radioac-tive Dating*. I.A.E.A., Vienna: 121-131.
 Krishnaswami, S., D. Lal, J.M. Martin & M. Meybeck. 1971.
- Krishnaswami, S., D. Lal, J.M. Martin & M. Meybeck. 1971. Geochronology of lake sediments. *Earth Planet. Sci. Lett.*, 11: 407-414.
- Lotter, A.F., P.G. Appleby, J.A. Dearing, J.-A. Gryntes, W. Hofmann, C. Kamenik, A. Lami, D.M. Livingstone, C. Ohlendorf, N. Rose & M. Sturm. (2000). The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.) *J. Paleolimnol.*: (in press).
 Oldfield, F. & P.G. Appleby. 1984. Empirical testing of ²¹⁰Pb
- Oldfield, F. & P.G. Appleby. 1984. Empirical testing of ²¹⁰Pb dating models. In: E.Y. Haworth & J.G. Lund (Eds), *Lake Sediments and Environmental History*. Leicester Univ. Press: 93-124.
- Oldfield, F., P.G. Appleby & R. Thompson. 1980. Palaeoecological studies of lakes in the Highlands of Papua New Guinea. I. The chronology of sedimentation. J. Ecology, 68: 457-477.
- Pennington, W., R.S. Cambray & E.M. Fisher. 1973. Observations on lake sediments using fallout ¹³⁷Cs as a tracer. *Nature*, 242: 324-326.

- Robbins, J.A. 1978. Geochemical and geophysical applications of radioactive lead. In: J.O. Nriagu (Ed.), *Biogeochemistry of Lead in the Environment*. Elsevier Scientific, Amsterdam: 285-393.
- Thompson, R. & R.M. Clark. 1989. Sequence slotting for stratigraphic correlation between cores: theory and practice. J. Paleolimnol., 2: 173-184.
- Wathne, B.M., S. T. Patrick, D. Monteith & H. Barth (Eds). 1995. *AL:PE 1 Report for the period April 1991-April 1993*. European Commission DGXII, Luxembourg: 292 pp.